Object-Oriented
Programming

What do you think makes a good, well-designed
abstraction?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids alreys

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

How do we design and
define our own

queStiOn abstractions?

Today’s

Review

Today'’s
topics

. What is a class?

Designing C++ classes

. Writing classes in C++

Review

Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e |Initial call to recursive function
produces final solution

Backtracking recursion: Exploring many possible solutions

Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking
® Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with)
large data structures (enumeration)
o Explicit unchoose step by "undoing" 2. Find one solution (OI’ prove
prior modifications to structure .
o E.g. Generating subsets (one set existence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore
o Pass by value; usually when memory
constraints aren’t an issue - Permutations
o Implicit unchoose step by virtue of - Subsets
making edits to copy
o E.g. Building up a string over time

General examples of things you can do:

- Combinations
- etc.

We’'ve seen lots of different backtracking strategies...

Questions to ask yourself when planning your strategy:

e What does my decision tree look like? (decisions, options, what to keep track of)
e What are our base and recursive cases?
What’s the provided function prototype and requirements? Do we need a helper
function?
Do we care about returning or keeping track of the path we took to get to our solution?
e Which of our three use cases does our problem fall into? (generate/count all solutions,
find one solution/prove its existence, pick one best solution)
What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
What are we building up as our “many possibilities” in order to find our solution?
(subsets, permutations, combinations, or something else)

Where are we now?

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

v

arrays

dynamic memory
management

linked data structures

testing ‘/

algorithmic analysis \/

recursive problem-solving ‘/

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving

abstract data structures
(vectors, maps, etc.)

Thic ic our abstraction

éoum/o.ky./

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving

Revisiting abstraction

ab-strac-tion
]

freedom from
representational

qualities in art
Example

demonctration

borrowed from Keith

Source: Google gc;"warz

| —=p
f* 8ie,

I

M p

T /",",j/."' ‘. _‘
\\ y ‘/{«‘ 3 \\\\\\\M&\(«((\\\)

XW/ ///{

W

7

Wi

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality

How do we accomplich thic in
C++.7 With !

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality

What is a class?

class
A class defines a new data type for our
programs to use.

class
A class defines a new data type for our
programs to use.

Thie counds familiar...

Remember structs?

struct BackpackItem {
int survivalValue;
int weight;

s

struct Juror {
string name;
int bias;

s

Remember structs?

struct BackpackItem {
int survivalValue;
int weight;

)s struct
A way to bundle different
struct Juror { types of information in C++ —
string name; like creating a custom data
} int bias; structure.

Then what'e the difference between a clacs and a struct?

Remember structs?

GridLocation chosen; GPoint origin(9, 0);
cout << chosen.row << endl; cout << origin.getX() << endl;
cout << chosen.col << endl; cout << origin.getY() << endl;

What'e the difference in how you use a Gridlocation ve. a GPoint?

Remember structs?

GridLocation chosen; GPoint origin(9, 0);

cout << chosen.row << endl; cout << origin.getX() << endl;
cout << chosen.col << endl; cout << origin.getY() << endl;
chosen.row = 3; origin.x = 3;

chosen.col = 4; origin.y = 4;

What'e the difference in how you use a Gridlocation ve. a GPoint?

Remember structs?

GridLocation chosen; GPoint origin(9, 0);
cout << chosen.row << endl; cout << origin.getX() << endl;
cout << chosen.col << endl; cout << origin.getY() << endl;

chosen.row = 3;
chosen.col = 4;

Ue don't have direct accecs to GPointe x and y coordinates!

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

e The only difference between structs + classes are the encapsulation defaults.
o A struct defaults to public members (accessible outside the class itself).
o A class defaults to private members (accessible only inside the class
implementation).

encapsulation
The process of grouping related information
and relevant functions into one unit and
defining where that information is accessible

Another way to think about classes...

e A blueprint for a new type of C++ object!

Another way to think about classes...

e A blueprint for a new type of C++ object!

o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

instance
When we create an object that is our new type,
we call this creating an instance of our class.

Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Vector<int> wvec;
|

Creates an instance of the fector clase
(i.e. an sbject of the fype lector)

How do we design C++
classes?

Three main parts

e Member variables

e Member functions (methods)

e Constructor

Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

Three main parts

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

Three main parts

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;

Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;

How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, clasces are uceful in helping ue with complex programs where
information can be grovped info objects.

Breakout design
activity

How would you design a class for...

e A bank account that enables
transferring funds between
accounts

e A Spotify (or other music
platform) playlist

We must specify the 3 parts:

1.

Member variables: What subvariables
make up this new variable type?

Member functions: What functions can
you call on a variable of this type?

Constructor: What happens when you
make a new instance of this type?

Announcements

Announcements

e The is coming soon! Make sure to read through the
information on the linked page if you haven't yet.

o The link to access your personalized diagnostic access portal will be posted on the homepage
of the website at 12:01am PDT Friday and will remain up until 11:59pm PDT Sunday.

e Assignment 3 is due tomorrow, Thursday, July 16 at 11:59pm.

e There will be a diagnostic review session hosted by Trip tomorrow night, from

7-8:30pm. The session will be recorded and made available on Canvas shortly
afterwards.

http://web.stanford.edu/class/cs106b/assessments/diagnostic/

¢ sourcegraph

Thursday 5 PT on Twitch

Demo and Recursion Info Session: Come
with all your recursion related questions!
https://www.twitch.tv/sourcegraph

How do we write classes in
C++7?

Random Bags

Random Bags

o A is a data structure similar to a stack or queue. It

supports two operations:

0 , which puts an element into the random bag, and
0 , which returns and removes a random element from the bag.

Random Bags

o A is a data structure similar to a stack or queue. It
supports two operations:
0 , which puts an element into the random bag, and
0 , which returns and removes a random element from the bag.

e Random bags have a number of applications:

o Simpler: Shuffling a deck of cards.
o More advanced: Generating artwork, designing mazes, and training self-driving cars
to park and change lanes!

Random Bags

o A is a data structure similar to a stack or queue. It
supports two operations:
0 , which puts an element into the random bag, and
0 , which returns and removes a random element from the bag.

e Random bags have a number of applications:

o Simpler: Shuffling a deck of cards.
o More advanced: Generating artwork, designing mazes, and training self-driving cars
to park and change lanes.

e Let’s go create our own custom RandomBag type!

Creating our own class

Classes in C++

e Defining a class in C++ (typically) requires two steps:

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.

Header files

What's in a header?

What's in a header?

This boilerplate code is called a
It used to

make sure weird things dont

happen if you include the came

header twice.

Curious how it workes? Come ask uc

after clagcs!

What's in a header?

#pragma once

Thic ic a . We're
creating a new clacs called
RandomBag. (/e a struct, thic
defines the name of a new type

that we can uge in our programs.

What's in a header?

#pragma once

class RandomBag ({

Don't forget to add the semicolon!
/ Voull run into come scary com,bi/er
} errore if you leave it out!

What's in a header?

Interface

#pragma once (What it looks like)

class RandomBag ({

Implementation
(How it works)

o 5 The cpecifiec what
Wh at'sina header . Functions you can call on objects
of thic type.

#pragma once

class RandomBag { Think things like the vector
public: D .add () function or the string¥

.find ().

private:

};

The cpecifiec what

(P 3
What Sinha header . Functions you can call on objects
of thic type.]
#pragma once f "
class RandomBag { Think t/u'hg.(' like the Vector
public: N .add() function or the string®
.find ().
J [he
private: contains information that oéjecfs’
}<\ of thic clacs type will need in order
b to do their job properly. This is

invisible o people vcing the clags. |

What's in a header?

#pragma once Thece are of

class RandomBag { the RandomBag clase. Theyre

Functions you can call on objects

public:

of t ype RandomBag.

All member functions must be
private: defined in the clace definition. Well

implement these functions in the

}; C++ file.

What's in a header?

#pragma once

#include '"vector.h"
class RandomBag ({
public:

void add(int wvalue) ;
int removeRandom() ;

private:

};

This ic a of the
clase. This telle ve how the class ic
implemented. Internally, we're
going to sfore a Vector<int>
holding all the elements. The only
code that can accecs or tovch thic
Vector /¢ the RandomBag

implementation.

Header summary

#pragma once

#include "vector.h"

class RandomBag { K—\ C/AS'C deﬁ'm‘ﬁah am/ name
public:

void add(int wvalue) ; K\ /M thod
ethod¢

int removeRandom() ;

private:

Vector<int> elems; & \ Member variable
};

Header summary

#pragma once
#include "vector.h"
class RandomBag ({
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

Implementation files

RandomBag. cpp

#include "RandomBag.h"

#include "RandomBag.h"

IF we're going to implement the
RandomBag Cype, the .cpp file
needs to have the class definition
available.

#include "RandomBag.h"

IF we're going to implement the
RandomBag Cype, the .cpp file

needs to have the clacs definition

availoble.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {

}

elems.add (value) ;

[he syntax RandomBag: :add means the add function defined ingide
of RandomBag. " The :: operator is called the
in C++ and is vsed To cay where to look for things.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void

add (int wvalue) {
elems.add (value) ;

IF we had written comething like this inctead, then the compiler
would think we were just making a free function named add that has
nothing to do with RandomBag’ s vercion of add. Thatc an easy

mistake to make!

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}
We don't need to specify where elems ic. The compiler knowg that

were incide RandomBag, and <o it knows that thic means "the current

RandomBag's collection of elements.”

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size();
bool isEmpty () ;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
) bool isEmpty () ;
private:
Vector<int> elems;

};

}

int RandomBag: :size() {
return elems.size();

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;
}
int index = randomInteger (0, elems.size()
int result = elems[index];
elems.remove (index) ;
return result;

}

int RandomBag: :size() {
return elems.size();

}

bool RandomBag: :isEmpty () {
return size() == 0;

}

- 1);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
bool isEmpty () ;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;
}
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];

elems.remove (index) ;
return result; This code calle ovr own
} .
size() function. The clacs
int RandomBag::size () ({ ,’mp/emenfatfon can use the
return elems.size(); o
} public interface.

bool RandomBag: :isEmpty () {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
bool isEmpty () ;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {

}

elems.add (value) ;

int RandomBag: :removeRandom() {

}

if (elems.isEmpty()) {

error ("Aaaaahhh!") ;
}
int index = randomInteger (0, size()
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag: :size() {

}

return elems.size();

bool RandomBag: :isEmpty () {

}

return size() == 0;

What a g00d idea!
Let'c use it up here
a¢ well.

- 1);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
bool isEmpty () ;
private:
Vector<int> elems;

};

}

}

}

}

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {

error ("Aaaaahhh!") ;
}
int index = randomInteger (0, size()
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag: :size() {

return elems.size() ;

bool RandomBag: :isEmpty () {

return size() == 0;

- 1);

This use of the const /éegward
means "I promice that thic
Function doecnt change the
ctate of the object.”

public:
void add(int wvalue) ;
int removeRandom() ;
int size () const;
bool isEmpty () const;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int ind| bize() - 1);
T AN We have to remember to [0)
int res #pragma once
iiiﬁiﬁr add it into the #include "vector.h"
) implementation as well! class RandomBag {
public:
.) void add(int wvalue) ;
int RandomBag::size () const { .
] int removeRandom() ;
return elems.size(); . .
int size() const;
) bool isEmpty () const;
- private:
bool RandomBég..lsEmpty() const { Vector<int> elems ;
return size() == 0; };
} 14

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;
}
int index = randomInteger (0, size()
int result = elems[index];
elems.remove (index) ;
return result;

}

int RandomBag::size () const {
return elems.size();

}

bool RandomBag: :isEmpty () const {
return size() == 0;

}

- 1);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() const;
bool isEmpty () const;
private:
Vector<int> elems;

};

Using a custom class

[Qt Creator demo]

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

e Member functions have an implicit parameter that allows them to know what
object they’re operating on

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

e Member functions have an implicit parameter that allows them to know what
object they’re operating on

e When you don’t have a constructor, there’s a default O argument constructor

that instantiates all private member variables
o (We’ll see an explicit constructor tomorrow!)

An example:
Structs vs. classes

[time-permitting]

Summary

Object-Oriented Programming

e We create our own abstractions for defining data types using classes. Classes
allow us to encapsulate information in a structured way.

e C(lasses have three main parts to keep in mind when designing them:
o Member variables » these are always private
o Member functions (methods)
o Constructor = this is created by default if you don’t define one

e Writing classes requires the creation of a header (. h) file for the interface and
an implementation (. cpp) file.

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

e

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory
management

linked data structures

real-world
algorithms

Life after CS1068/

algorithmic recursive
analysis problem-solving

Dynamic memory and arrays

Array size = 10

10 | 20 | 30 | 40 50 60 | 70 | 80 | 90 | 100

Top of the stack

Stack base

Stack Heap

