Priority Queues and Heaps

What is one area for growth that you identified as a
takeaway from completing the diagnostic?
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

e

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

How can we make use of
multiple levels of

?
TOday S abstraction in our data

g uestion storage techniques to build
better ADTs?

Tod ay,S 1. Review (OurVector)
topics

2. Priority Queues

3. Binary Heaps

Review

[implementing OurVector]

What is OurVector?

e Goal: Implement own version of the Stanford C++ Vector

e Scope Constraints:
o We will only implement a subset of the functionality that the Stanford Vector
provides.
O OurVector can and is not be configurable to store other

types
o When we left off on Monday, OurVector was limited to

. For now, if we run out space we just throw an error.

OurVector Header File

class OurVector {
public:
OurVector () ;
~QurVector () ;
void add(int wvalue) ;
void insert(int index, int wvalue);
int get(int index);
void remove (int index) ;
int size();
bool isEmpty () ;
private:
int* elements;
int allocatedCapacity;
int numItems;

};

OurVector Member Variables

¢ int* elements;

o A pointer to an array of integers, which will act as our underlying data storage
mechanism.

e int allocatedCapacity;

o An integer that stores the size of the allocated elements array. Remember,
arrays don't have any conception/knowledge of their own size, so we must
manually track this!

¢ int numItems;
o An integer that stores the number of elements currently stored in the vector.

Review: Constructors and Destructors

e The is the special method that gets called when a new instance of
a class is declared. In this method, we initialize all of our member variables to
the appropriate values, including allocating any necessary memory.

o The constructor for a class named ClassName has signature
ClassName (args) ;

e The is the special method that gets called when an instance of a
class goes out of scope and thus is destroyed. In this method, we most often
are responsible for freeing any dynamically allocated memory used by the
instance.

o The destructor for a class named ClassName has signature
~ClassName () ;

Review: OurVector internal state

198 106 -3 27 4 g g ?
0 1 2 3 4 5 6 7
A

// client code

elements 0x1234abef OurVector vec;
vec.add (106) ;
vec.add (42) ;

allocated vec.add(-3) ;
Capacity 8 vec.add (27) ;

vec.remove (1) ;
numItems 4 vec.insert (0, 198);

Running Out of Space

e Our current implementation very quickly runs out of space to store
elements.

e What should we do when this happens?

o Currently, we just throw an error. That doesn't seem quite right.
What if all data structures we used were limited to hold only 8
items?

o Instead, we need a way to our internal
data storage mechanism.

Dynamic Array Growth

A Day in the Life of a Hermit Crab

e Hermit crabs are interesting animals. They live in scavenged shells that they
find on the seafloor. Once in a shell, this is their lifestyle (with a bit of poetic

license):

o Grow until they have outgrown their current shell. Then, follow these 5 steps.

Find another, larger shell.

Move all their stuff into the new shell.

Leave the old shell on the seafloor.

Update their address with the Hermit Crab Postal Service.

Make note of their new shell's spacious capacity by posting on Hermit Crab Instagram.

e While this is purposefully a bit of a silly analogy, this process models almost
exactly what we need to do in order to dynamically resize our internal data
storage mechanism.

A Day in the Life of a Growable Array

® In essence, when we run out of space in our array, we want to allocate a new
array that is bigger than our old array so we can store the new data and keep
growing. These "growable arrays" follow a five-step expansion that mirrors the
hermit crab model (with poetic license).
o Grow the array until we run out of space (how can we tell if we've run out of
space?)
Create a new, larger array. Usually we choose to the current size.
Copy the old array elements to the new array.

m Delete (free) the old array.
m Point the old array variable to the new array.
m Update the associated capacity variable for the array.

106 42 -3 27

0 1 2 3
elements O0xl1234abef
allocated
Capacity 4
numItems 4

106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

1.

Create a new, larger array. Usually we
choose to double the current size.

? ? ? ?
0 1 2 3
106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

1.

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.

? ? ? ?
0 1 2 3
106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

106 42 -3 27
0 1 2 3
106 42 -3 27
0 1 2 3
A

elements 0xl1234abef

allocated

Capacity 4

numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

106 42 -3 27
0 1 2 3
106 42 -3 27
0 1 2 3
A

elements 0xl1234abef

allocated

Capacity 4

numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

106 42 -3 27
0 1 2 3
106 42 -3 27
0 1 2 3

A
.
elements delete]]
allocated
Capacity 4
numl tems 4

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

106 42

elements

allocated
Capacity

numltems

delete[]

4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

106 42 -3 27
0 1 2 3
elements 0x1234abef
allocated
Capacity 4
numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

106 42 -3 27
0 1 2 3
elements Oxabcd5678
allocated
Capacity 4
numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

106 42 -3 27
0 1 2 3
elements Oxabcd5678
allocated
Capacity 4
numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

Update the associated capacity variable
for the array.

106 42 -3 27
0 1 2 3
elements Oxabcd5678
allocated
Capacity 8
numItems 4

*~J
)
~

Create a new, larger array. Usually we
choose to double the current size.
Copy the old array elements to the new
array.

Delete (free) the old array.

Point the old array variable to the new
array.

Update the associated capacity variable
for the array.

Let's Code It! (Monday
wrap-up)

expand () private helper function

Implementing ADT Classes

e The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

e Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to

illustrate and visualize the contents and any operations that may be done.

e The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

. What about more complex
Implementing ADT Classes ADTe?

e The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

e Most ADT classes will need to store their data in an underlying array. The
organizational patterns of data in that array may vary, so it is important to

illustrate and visualize the contents and any operations that may be done.

e The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

. What about more complex
Implementing ADT Classes ADTe?

e The first step of implementing an ADT class (as with any class) is answering the
three important questions regarding its public interface, private member
variables, and initialization procedures.

e Most ADT classes will need to store their data in an underlying array. The
in that array may vary, so it is important to

illustrate and visualize the contents and any operations that may be done.

e The paradigm of "growable" arrays allows for fast and flexible containers with
dynamic resizing capabilities that enable storage of large amounts of data.

Multiple Levels of Abstraction

Levels of abstraction

Abstract Data
Structures

R R

Abstraction boahdary for Data Organization

Strategies
the ucer g

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user?
(Vectors, Sets, Queues, Grids, etc.)

____{.____

Data Organization
Strategies

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user?
(Priority Queue)

____{.____

What youll focus on Data Organization
for Ascignment 4 Strategies

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures

____{.____

How is our data organized?
(sorted array, binary heap)

Fundamental C++
Data Storage

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures
How is our data organized? Data Organization
(sorted array, binary heap) Strategies

What stores our data?
(arrays, linked lists, etc.)

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures
How is our data organized? Data Organization
(sorted array, binary heap) Strategies

What stores our data?
(arrays)

Levels of abstraction

What is the interface for the user? Abstract Data
() Structures
How is our data organized? Data Organization
(sorted array,) Strategies
What well

Fundamental C++

ores our data?
focus on foala}’-/ Data Storage

(arrays)

Priority Queues

What is a priority queue?

® A queue that orders its elements based on a provided “priority”

What is a priority queue?

® A queue that orders its elements based on a provided “priority”

e Like regular queues, you cannot index into them to get an item at a particular
position.

What is a priority queue?
® A queue that orders its elements based on a provided “priority”

e Like regular queues, you cannot index into them to get an item at a particular
position.

e Useful for maintaining data sorted based on priorities
o Emergency room waiting rooms

What is a priority queue?
® A queue that orders its elements based on a provided “priority”

e Like regular queues, you cannot index into them to get an item at a particular
position.

e Useful for maintaining data sorted based on priorities
o Emergency room waiting rooms
o Different airline boarding groups (families and first class passengers,
frequent flyers, boarding group A, boarding group B, etc.)

What is a priority queue?
® A queue that orders its elements based on a provided “priority”

e Like regular queues, you cannot index into them to get an item at a particular
position.

e Useful for maintaining data sorted based on priorities
o Emergency room waiting rooms
o Different airline boarding groups (:
frequent flyers, boarding group A, boarding group B, etc.)

Individval data. points can have the same priority!

What is a priority queue?
® A queue that orders its elements based on a provided “priority”

e Like regular queues, you cannot index into them to get an item at a particular
position.

e Useful for maintaining data sorted based on priorities
o Emergency room waiting rooms
o Different airline boarding groups (families and first class passengers,
frequent flyers, boarding group A, boarding group B, etc.)
o Filtering data to get the top X results (e.g. most popular Google searches
or fastest times for the Women’s 800m freestyle swimming event)

Three fundamental operations

e enqueue(priority, elem):inserts elem with given priority

e dequeue(): removes the element with the highest priority from the queue

e peek(): returns the element with the highest priority in the queue without
removing it

Less fundamental operations

e size(): returnsthe number of elements in the queue

e isEmpty(): returns true if there are no elements in the queue, false otherwise

e clear(): empties the queue

How do we design PriorityQueue?

1. Member functions: What public interface should PriorityQueue
support? What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in PriorityQueue?

3. Constructor: How are the member variables initialized when a new
instance of PriorityQueue is created?

How do we design PriorityQueue?

1. : What public interface should PriorityQueue
support? What functions might a client want to call?

2. Member variables: What private information will we need to store in
order to keep track of the data stored in PriorityQueue?

3. Constructor: How are the member variables initialized when a new
instance of PriorityQueue is created?

Well ,bkovfa'e the ,baé//c interface...

How do we design PriorityQueue?

2. . What private information will we need to store in
order to keep track of the data stored in PriorityQueue?

3. : How are the member variables initialized when a new
instance of PriorityQueue is created?

You get to decide on the implementation details!

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But every time we enqueue something, we have to adjust the entire array...

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But everytime we something, we have to adjust the entire array...

,K Youll get to implement this

on the acsignment!

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But every time we enqueue something, we have to adjust the entire array...

e Can we do better?

How do we implement PriorityQueue?

e We want to be able to access the element that has the highest priority in
constant-time (i.e. peek()).

e Idea: We can keep a sorted array where the elements are in order of their

priority (highest priority is at the end of the array)!
o Dequeue will be fast — just get the last element in the array.
o But every time we enqueue something, we have to adjust the entire array...

e Can we do better? (yes!)

There are multiple pocsible implementations for the came ADT!

Levels of abstraction

What is the interface for the user? Abstract Data
(Priority Queue) Structures

____{.____

How is our data organized?
(sorted array,)

Fundamental C++
Data Storage

What stores our data?
(arrays)

Announcements

Announcements

e Assignment 4 was released yesterday afternoon and is due next Monday, July 27 at
11:59pm PDT.

e Trip's Assignment 4 YEAH session will be tonight at 6pm PDT.

e The final project guidelines were posted on the website yesterday afternoon. Read them
and start thinking about what you want to do your project on!

e Be judicious with your use of private posts on Ed! If you're asking a general question that
all students would benefit from, make it public! Private posts should only be used if your
post includes portions of your assignment code.

e Make sure you're reading and applying your assignment feedback!

Binary Heaps

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)
o Completely filled (each parents must have 2 children) except for the bottom level,
which gets populated from left to right

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)
o Completely filled (each parents must have 2 children) except for the bottom level,
which gets populated from left to right

e Two types = which we use depends on what we define as a “higher” priority
o Min-heap: smaller numbers = higher priority (closer to the root)
o Max-heap: larger numbers = higher priority (closer to the root)

What is a binary heap?

e A heap is a tree-based structure that satisfies the heap property that parents
have a higher priority than any of their children.

e Additional properties
o Binary: Two children per parent (but no implied orderings between siblings)
o Completely filled (each parents must have 2 children) except for the bottom level,
which gets populated from left to right

e Two types = which we use depends on what we define as a “higher” priority
© : smaller numbers = higher priority (closer to the root)
o Max-heap: larger numbers = higher priority (closer to the root)

Spot the Valid Min-Heap

{"a ", 4}

O

{" b"’ 6}

N

{"d "’ 7}

{"e"’ 9}

Heap 1

{"C", 8}

{"a"’ 4}

\
/

{" b", 6}

{"d ", 7}

{"e", 5}

Heap 2

{"C", 8}

Spot the Valid Min-Heap

root nodes
{"a", 4} {"a", 4}
{"b", 6} {"c", 8} {"b", 6} {"c", 8}
{"d", 7} {"e", 9} {"d", 7} {"e", 5}
Heap 1 Heap 2

Spot the Valid Min-Heap

children of
(a4 the root e 4
N / W/eg\ N
{"b", 6} {"c", 8} {"b", 6} {"c", 8}
{"d", 7} {"e", 9} {"d", 7} {("e", 5}
Heap 1 Heap 2

Spot the Valid Min-Heap

{"a ", 4}

O

{" b"’ 6}

N

{"d "’ 7}

{"e"’ 9}

Heap 1

{"C", 8}

{"a"’ 4}

\
/

{" b", 6}

{"d ", 7}

{"e", 5}

Heap 2

{"C", 8}

Spot the Valid Min-Heap

{"a ", 4}

O

{" b"’ 6}

N

{"d "’ 7}

{"e"’ 9}

Heap 1

{"C", 8}

{"a"’ 4}

\
/

{" b", 6}

{"d ", 7}

{"e", 5}

Heap 2

{"C", 8}

[Thic efement i¢

Spot the Valid Min-Heap

not smaller than
both its children!

("a", 4) X ("a", 4)
("b", 6) {"c", 8) ("b", 6) {"c", 8}
{("d", 7} {"e", 9} ("d", 7) {"e", 5}
Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a ", 4} {"a"’ 4}

— O

{"b"’ 6} {"b"’ 6} {"C", 8}

N

{"d"’ 9} {"e"’ 10}

Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a ", 4} {"a"’ 4}

— O

{"b"’ 6} {"b"’ 6} {"C", 8}

N

{"d"’ 9} {"e"’ 10}

Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a ", 4} {"a"’ 4}

— O

{"b"’ 6} {"b"’ 6} {"C", 8}

N

{"d"’ 9} {"e"’ 10}

Heap 1 Heap 2

Spot the Valid Min-Heap (Round 2)

{"a ", 4} {"a "’ 4}

— O

{"b"’ 6} {"b"’ 6} {"C", 8}

N
7> |rdne| (e 10)

This level of the

heap is not

Heap 1 Heap 2

complete

Binary heaps and
Implementation

Binary heaps and implementation

What is the interface for the user? Abstract Data
(Priority Queue) Structures

____{.____

How is our data organized?
(sorted array,)

Fundamental C++
Data Storage

What stores our data?
(arrays)

Binary heaps and implementation

What is the interface for the user? Abstract Data
(Priority Queue) Structures
How is our data organized? Data Organization
() Strategies

What stores our data?

(arrays)
D

Binary heaps + implementation

e Binary heaps are both another way to implement PriorityQueue and also an
abstraction on top of arrays!

Binary heaps + implementation

e Binary heaps are both another way to implement PriorityQueue and also an
abstraction on top of arrays!

e Later, we will see a different approach to storing tree structures, but for heaps
(which look like trees), the best solution is actually a simple array.
o The reason for this is because of the complete nature of the structure,
with all levels filled from left to right.

Binary heaps + implementation

e Binary heaps are both another way to implement PriorityQueue and also an
abstraction on top of arrays!

e Later, we will see a different approach to storing tree structures, but for heaps
(which look like trees), the best solution is actually a simple array.

o The reason for this is because of the complete nature of the structure,
with all levels filled from left to right.

How are parente and children in the tree related in the Mmy?

Binary heaps + implementation

{"a"’ 4}

O

{"b", 6} {"C", 8}

N

{"d"’ 7} {'le||’ 9}

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0] 1 2 3 4

Binary heaps + implementation

{nan, 4} Parent index;: O
Left child: 1
/\ Right child: 2
{"b", 6} {"C", 8}
{"d"’ 7} {"e"’ 9}

(a4 (0.6} {c.8 ("7} (e,

0] 1 2 3 4

Binary heaps + implementation

{"a", 4}
e "Wt Parent index: 1
("% 6} ("c" 8) Left child: 3
/\ Right child: 4
{"d"’ 7} {"e"’ 9}

(. 4) (b6} (.8 ("7} (e, 9}

0] 1 2 3 4

Binary heaps + implementation

("a", 4) Left child: 1
/\ Right child: 2
Left child: 2*1 + 1 {("b", 6} {"c", 8) Left child: 3
Right child: 2*1 + 2 /\ Right child: 4
{"d"’ 7} {"e"’ 9}

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0] 1 2 3 4

Binary heaps + implementation

("a", 4) Parent index: O
Parent: (i-1) / 2 /\ -
Parent index: 1
{"b", 6} {"C", 8}
{"d"’ 7} {'lel|’ 9}

{"a”, 4} | {"b", 6} {*c”, 8} | {"d", 7} | {"€”, 9}

0] 1 2 3 4

Manipulating heap
contents

Heap operations

There are three important operations in a heap:

e peek(): return the element with the highest priority (lowest number for a
min-heap). This operation does not change the state of the heap at all.

e enqueue(e):insert an element e into the heap. Insertion of this element must
result in a heap that still retains the heap property! Accomplishing this will
require some clever manipulation.

e dequeue(): remove the highest priority (smallest element for a min-heap)
from the heap. This changes the state of the heap, and thus we have to do
work to restore the heap property.

{"a", 5} l

{"b"’ 10} ‘ {"C", 8}

{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"a", 5] {"b"’ 10} {"c", 8] {"d", 12} {"e"’ 11] {"f", 14} {"g", 13} {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

peek()

e Look at the root of the tree (position O in your array)

e 0(1)

{"a ", 5} l

{"b"’ 10} ‘ {"C", 8}

{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

["a", 5} {"b"’ 10} {"c", 8] {"d", 12} {"e"’ 11] {"f", 14} {"g", 13} {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

e How might we go about inserting into a binary heap?
e Example: What if we called enqueue({"j", 9}) into the heap from before?

e The key is to understand how heaps are built: it is critical that we fill each level
from left to right.

e So, we start by putting the element into the first empty slot at the bottom level.
Similar to how we did with the OurVector class, we can say something along
the lines of heap[heapSize] = newElement;

Operation: enqueue("j", 9)

enqueue() {%mal
{"b", 10} ‘ {"C"’ 8}
{"d"’ 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43}
{"a", 5} {"b", 10} {"c", 8} {("d", 12} {"e", 11} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} 7 7 7
o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"j", 9}
{("a",5} | {("b"10} | ("¢ 8} | {"d". 12} | ("e". 1} | ("f" 14} ("g". 13} | {("h" 22} | ("i" 43} | (4"9) ? ?
o 2 3 4 5 6 7 8 9 10 1"

enqueue()

{"b"’ 10}

/\b

{"a "’Ei

Operation: enqueue("j", 9)

‘ {"C"’ 8}

‘/\

{"d", 12:} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"j", 9} \.—
{("a",5) | {"b"10} | ("c".8) | ("d"12} | {"e". 11} | ("f"14)} | ("g". 13} @ ("h". 22} ({'i"43} | ("9} ? ?
0 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

e Inserting our new element into the first empty slot destroyed the heap
property — it is now our job to "fix things up" and restore the heap

property.

e Todoso,we the new element into a spot in the heap that is
more fitting of its priority.
o Look at the newly added element and its parent. Do they have a proper min-heap
relationship (that is, is the parent smaller than the child element)?
m Ifyes, then we're done, terminate the bubble up process.
m If not,
o Repeat the above steps until the process terminates or until the newly added element
becomes the root of the heap.

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"j", 9}
{("a",5} | {("b"10} | ("¢ 8} | {"d". 12} | ("e". 1} | ("f" 14} ("g". 13} | {("h" 22} | ("i" 43} | (4"9) ? ?
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12} {"e"’ 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"j", 9}
{("a",5} | {("b"10} | ("¢ 8} | {"d". 12} | ("e". 1} | ("f" 14} ("g". 13} | {("h" 22} | ("i" 43} | (4"9) ? ?
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12:} {"e", 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"j", 9}
{"a", 5} {"b", 10} {"c", 8} {("d",12} | {"e", 11} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"j", 9} 7 7
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12:} {"e", 11} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"j", 9}
{"a", 5} {"b", 10} {"c", 8} {("d",12} | {"e", 11} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"j", 9} 7 7
o 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12:} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {("d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {("d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {("d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12:} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {("d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"b", 10} ‘ {"C"’ 8}
{"d", 12:} {"j", 9} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"e", 11}
{"a", 5} {"b", 10} {"c", 8} {("d", 12} {"j", 9} {"f", 14} {"g",13} | {"h", 22} | {"i", 43} {"e", 11} 7 7
o 2 3 4 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} | {9} {"<, 8} | {"d", 12} | {"" 10} {"f", 14} {"9"13} {"h", 22} | {"i",43} | {"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} | {9} {"<, 8} | {"d", 12} | {"b", 10} | {"f", 14} @ {"9"13} {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} | {9} {"<, 8} | {"d", 12} | {"b", 10} | {"f", 14} @ {"9"13} {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {..a..,ﬂ
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} {"" 9} {"<, 8} | {"d", 12} | {"b", 10} | {"f", 14} @ {"9"13} {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {..a..,ﬂ
("j", 9) ‘ ("c", 8)
A A
{"d", 12} {"b", 10} {"f", 14} {"g", 13}
N -
"h", 22} | | {"i", 43} | | {"e", 11)

{"a", 5} {"" 9} {"<, 8} | {"d", 12} | {"b", 10} | {"f", 14} @ {"9"13} {"h", 22} | {"i",43} | ({"e", 11} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

Operation: enqueue("j", 9)

enqueue() {"a"’fi
{"j "’ 9} ‘ {"C"’ 8}
{"d", 12} {"b"’ 10:} {"f"’ 14} {"g"’ 13}
{"h"’ 22} {"i", 43} {"e", 11}
{("a"5) ("9} | {"c"8) | {"d"12} | {"b"10} @ ("', 14)} | ('g" 13} | {"h", 22} | {"i" 43} | ("e", 1) ? ?
o 1 2 3 4 5 6 7 8 9 10 1"

enqueue()

e After our "bubble up" process completes, the heap is in a proper state again.
Yay! We have now successfully inserted a new element into the heap.

e [or a cool animation of this process across many enqueue operations, check
out this cool

e What is the runtime complexity of the enqueue operation?
o Inthe worst case scenario, we have to bubble up the new element all the way up to

the root position.

o Since there are n total elements, the tree will have 1og n levels, which means we
would do log n comparisons and 1og n swaps along the way.

o The overall complexity is 0(log n), which we know is blazingly fast! How cool!

http://www.cs.usfca.edu/~galles/visualization/Heap.html

dequeue()

e Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

e Bubble down to regain the heap property!

dequeue()

® Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

{"a ",Ei

{"j"’ 9} ‘ {"C", 8}

{"d", 12} {"b", 10} {"f"’ 14} {"e"’ 11}

N <

{"h", 22} {"i", 43} {"g"’ 13}

{"a", 5] {"jll, 9} {"c", 8] {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11] {"h", 22] {"i"’ 43} ["g", 13} ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"j "’49}{

¢/\.

{"d", 12} {"b", 10}
{"h", 22} {"i", 43} {"g"’ 13}
("o} | ("8 | ("d"12) | {"b"10} | {'f",14)
0 1 2 3 4 5

[lle"’ 11]

6

‘ {"C", 8}

A

{"f"’ 14}

{"h", 22] {"i"’ 43} ["g", 13}

7

8

9

?

10

{"e", 11}

1"

{"g "’ 13}

{"j"’ 9} ‘ {"C", 8}

{"d", 12} {"b", 10} {"f"’ 14} {"e", 11}

N

{"h", 22} {"i", 43}

{"g", 13} {"jll, 9} {"c", 8] {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11] {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

dequeue()

® to regain the heap property!
o Compare the moved element to its new children.
m [|f one of the two children is smaller, swap with that child.
m |f both of the children are smaller, swap with the one that’s smaller.
o Repeat until you no longer bubble down or there are no more children to compare
against.

{"g "’ 131

{"j"’ 9} ‘ {"C", 8}

{"d", 12} {"b", 10} {"f"’ 14} {"e", 11}

N

{"h", 22} {"i", 43}

{"g", 13} {"j", 9} {"c"’ 8} {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11] {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"C", 8} l

{"j"’ 9} ‘ {"9"9 13}

{"d", 12} {"b", 10} {"f"’ 14} {"e", 11}

N

{"h", 22} {"i", 43}

‘["C", 8} {"jll, 9} {"g", 13} {"d", 12} {"b"’ 10} {"f", 14} [lle"’ 11] {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"C", 8} l

{"j"’ 9} ‘ {"9"9 13}

{"d", 12} {"b", 10} {"f"’ 14} {"e"’ 11}

N

{"h", 22} {"i", 43}

{"C", 8] {"jll, 9} {"g", 13} {"d", 12} {"b"’ 10} {"f"’ 14} {"e", 11} {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

{"C", 8} l

{"j", 9} ‘ ("e", 11)

{"d", 12} {"b", 10} {"f"’ 14} {"g"’ 13}

N

{"h", 22} {"i", 43}

{"C", 8] {"jll, 9} {"e", 11] {"d", 12} {"b"’ 10} {"f", 14} {"g"’ 13} {"h", 22] {"i"’ 43} ? ? ?

o 1 2 3 4 5 6 7 8 9 10 1"

dequeue()

e Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

e Bubble down to regain the heap property!

e O(log n): At worst, you do one comparison at each level of the tree.

dequeue()

e Remove the minimum element; the root of the tree.

e Replace the root with the “last” element in our tree (last level, farthest right)
since we know that location will end up empty.

e Bubble down to regain the heap property!

e O(log n): At worst, you do one comparison at each level of the tree.

We have a data structure with only 0(log n) and 0(1) operations!

Summary

Levels of abstraction

What is the interface for the user?
(Priority Queue)

How is our data organized?
(sorted array, binary heap)

What stores our data?
(arrays)

Abstract Data
Structures

____{.____

Data Organization
Strategies

Fundamental C++
Data Storage

Summary

o are queues ordered by priority of their elements, where the
highest priority elements get dequeued first.

) are a good way of organizing data when creating a priority
queue.
o Use a min-heap when a smaller number = higher priority (what you’ll use
on the assignment) and a max-heap when a larger number = higher
priority.

e There can be multiple ways to implement the same abstraction! For both ways
of implementing our priority queues, we’ll use for data storage.

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

arrays

dynamic memory

management
real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

Memory and Pointers

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERS?

Ox3A28213A

Ox6339292C,

Ox 7363632E.
| HATE YOU.

a3k

