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OurVector
class OurVector {
public:
    OurVector();
    ~OurVector();
    void add(int value);
    void insert(int index, int value);
    int get(int index);
    void remove(int index);
    int size();
    bool isEmpty();
private:
    int* elements;
    int allocatedCapacity;
    int numItems;
};
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OurVector
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0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);
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Abstraction bounda y fo  
the user





What you’ll focus on 
fo  Assignment 4









What Ʒ ’ll 
focus on today!
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Individual data points can hav  the sam  priority!
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We’ll provide the public int rface...



You get to d cide on the impl mentation details!
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You’ll get to implem nt this 
on th  assignm nt!
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root nodes



child  n of
the root
nod s



Poll: Which of these heaps is a 
valid min-heap?





This  lement is 
not smaller than 
both its children!
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How a e par nts and child  n in the t  e related in th  ar ay?
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Problem: The heap property is 
now violated!
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Step 1: Compare current 
element with its parent.
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Step 2: Heap property is 
violated! We must swap!
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Step 1: Compare current 
element with its parent.
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Step 1: Compare current 
element with its parent.
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Step 2: Heap property is 
satisfied! Terminate bubbling!
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http://www.cs.usfca.edu/~galles/visualization/Heap.html
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We have a data structure with only   and   op  ations!
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