

Life after CS106B!

Life after CS106B!

OurVector

OurVector

OurVector

●

●
○

○ OurVector

○ OurVector

OurVector
class OurVector {
public:
 OurVector();
 ~OurVector();
 void add(int value);
 void insert(int index, int value);
 int get(int index);
 void remove(int index);
 int size();
 bool isEmpty();
private:
 int* elements;
 int allocatedCapacity;
 int numItems;
};

OurVector

● int* elements;
○

● int allocatedCapacity;
○

● int numItems;
○

●

○ ClassName
ClassName(args);

●

○ ClassName
~ClassName();

OurVector

198 106 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

8

4

// client code

OurVector vec;
vec.add(106);
vec.add(42);
vec.add(-3);
vec.add(27);

vec.remove(1);
vec.insert(0, 198);

●

●
○

○

●

○
■
■
■
■
■

●

●

○

■
■
■
■
■

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

? ? ? ? ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

delete[]

106 42 -3 27

0 1 2 3

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

delete[]

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0x1234abef

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0xabcd5678

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0xabcd5678

4

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

elements

allocated
Capacity

numItems

0xabcd5678

8

4

106 42 -3 27 ? ? ? ?

0 1 2 3 4 5 6 7

expand()

●

●

●

●

●

●

What about more compl x
ADTs?

●

●

●

What about more compl x
ADTs?

Abstraction bounda y fo
the user

What you’ll focus on
fo Assignment 4

What Ʒ ’ll
focus on today!

●

●

●

●

●

●
○

●

●

●
○
○

●

●

●
○
○

Individual data points can hav the sam priority!

●

●

●
○
○

○

●

●

●

●

●

●

We’ll provide the public int rface...

You get to d cide on the impl mentation details!

●

●

●

○
○

●

●

○
○

You’ll get to implem nt this
on th assignm nt!

●

●

○
○

●

●

●

○
○

●

The are multiple possible implementations for the sam ADT!

●

●

●

●

●

●

●

●
○

●

●
○
○

●

●
○
○

●
○
○

●

●
○
○

●
○
○

root nodes

child n of
the root
nod s

Poll: Which of these heaps is a
valid min-heap?

This lement is
not smaller than
both its children!

Poll: Which of these heaps is a
valid min-heap?

This l vel of th
heap is not
compl te

●

●

●

○

●

●

○

How a e par nts and child n in the t e related in th ar ay?

{“a”, 4} {“b”, 6} {“c”, 8} {“d”, 7} {“e”, 9}

{“a”, 4} {“b”, 6} {“c”, 8} {“d”, 7} {“e”, 9}

{“a”, 4} {“b”, 6} {“c”, 8} {“d”, 7} {“e”, 9}

{“a”, 4} {“b”, 6} {“c”, 8} {“d”, 7} {“e”, 9}

{“a”, 4} {“b”, 6} {“c”, 8} {“d”, 7} {“e”, 9}

● :

●

● :

? ? ?

●

●

? ? ?

●

●

●

●

? ? ?

? ?

? ?

Problem: The heap property is
now violated!

●

●

○

■
■

○

? ?

? ?

Step 1: Compare current
element with its parent.

? ?

Step 1: Compare current
element with its parent.

? ?

Step 2: Heap property is
violated! We must swap!

? ?

Step 2: Heap property is
violated! We must swap!

? ?

? ?

Step 1: Compare current
element with its parent.

? ?

Step 1: Compare current
element with its parent.

? ?

Step 2: Heap property is
violated! We must swap!

? ?

Step 2: Heap property is
violated! We must swap!

? ?

? ?

Step 1: Compare current
element with its parent.

? ?

Step 1: Compare current
element with its parent.

? ?

Step 2: Heap property is
satisfied! Terminate bubbling!

? ?

●

●

●
○

○

○

http://www.cs.usfca.edu/~galles/visualization/Heap.html

●

●

●

●

●

●

? ?

? ?

? ? ?

●

●

●
○

■
■

○

? ? ?

? ? ?

? ? ?

? ? ?

●

●

●

●

●

●

●

●

We have a data structure with only and op ations!

●

●

○

●

Life after CS106B!

