
Strings and Testing
What’s something that’s become more difficult for

you during online learning?
(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!
Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

C++ basics

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysis

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

testing

Core
Tools

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!
Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

C++ basics

testing

Core
Tools

Today’s
questions

How can we improve the online
learning environment?

[Review with spaceship.cpp]

What’s special about strings in C++?

How do we test code in CS106B?

What’s next?

How can we improve the
online learning environment?

Zoom chat is distracting.

The enthusiasm and curiosity is inspiring!

Zoom chat is distracting.

The enthusiasm and curiosity is inspiring!

But we also realized that the chat can be very overwhelming for some students
during lecture (especially if you’re trying to view from a phone).

Zoom chat is distracting.

The enthusiasm and curiosity is inspiring!

But we also realized that the chat can be very overwhelming for some students
during lecture (especially if you’re trying to view from a phone).

I found it hard to figure out whose questions had been answered, and students
who asked questions wouldn’t always see the answers.

Zoom chat is distracting.

The enthusiasm and curiosity is inspiring!

But we also realized that the chat can be very overwhelming for some students
during lecture (especially if you’re trying to view from a phone).

I found it hard to figure out whose questions had been answered, and students
who asked questions wouldn’t always see the answers.

New norm: Anyone can ask questions, but only course staff will answer questions
in the chat. (We’ll try this, and we can always adjust later if this isn’t working.)

Zoom chat is distracting.

The enthusiasm and curiosity is inspiring!

But we also realized that the chat can be very overwhelming for some students
during lecture (especially if you’re trying to view from a phone).

I found it hard to figure out whose questions had been answered, and students
who asked questions wouldn’t always see the answers.

New norm: Anyone can ask questions, but only course staff will answer questions
in the chat. (We’ll try this, and we can always adjust later if this isn’t working.)

Thank you for the early feedback!

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

1. Questions that will enable you to understand the rest of the topic/lecture.
2. Questions will expand your depth of knowledge but that your immediate

understanding does not depend upon.

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

1. Questions that will enable you to understand the rest of the topic/lecture.

Strategy: Ask immediately by raising your hand (or putting it in the chat if you’re
more comfortable with that). If you found something confusing, someone else

probably did, too. And remember, celebrate struggle!

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

2. Questions will expand your depth of knowledge but that your immediate
understanding does not depend upon.

Strategy: Write down your question and ask when it’s clear we’re transitioning to a
new topic. We’ll also often stop for questions then.

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

2. Questions will expand your depth of knowledge but that your immediate
understanding does not depend upon.

Strategy: If you can answer the question yourself by writing a small piece of code
to test your question, we encourage you to do that, too!

We can better center questions around learning.
Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

1. Questions that will enable you to understand the rest of the topic/lecture.
2. Questions will expand your depth of knowledge but that your immediate

understanding does not depend upon.

Think about how to use questions to maximize your concentration and learning!

We can better center questions around inclusivity.

There is also a third type of question:

Some students ask questions that are not really questions so much as opportunities
to demonstrate knowledge of jargon or facts that are beyond the scope of the topic
at hand. This can have a discouraging effect on other students. If you find yourself
wanting to make such a question or comment in lecture, I encourage you to
consider office hours as a better venue for exploring that topic with me.

- Cynthia Lee, Stanford Senior Lecturer in CS

We can better center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

We can better center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

Curiosity is wonderful, and we’re happy to talk about advanced CS topics with you
during office hours.

We can better center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

Curiosity is wonderful, and we’re happy to talk about advanced CS topics with you
during office hours.

But we also don’t want to send the message that you need to know about these
things when entering CS106B.

● In particular, we don’t expect students in this class to have prior C++
knowledge or knowledge of the topics that we explicitly introduce from
scratch. So please keep this mind when you’re asking questions!

We can better center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

Curiosity is wonderful, and we’re happy to talk about advanced CS topics with you
during office hours.

But we also don’t want to send the message that you need to know about these
things when entering CS106B.

If you do have prior experience in C++ or in the topics we’ll be covering, that’s
great! It also benefits your learning to approach these concepts with a beginner’s
mindset – you might notice and learn things that you didn’t before.

We can better center questions around inclusivity.
One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

Curiosity is wonderful, and we’re happy to talk about advanced CS topics with you
during office hours.

But we also don’t want to send the message that you need to know about these
things when entering CS106B.

It also benefits your learning to approach these concepts with a beginner’s mindset
– you might notice and learn things that you didn’t before.

Consider if lecture or individual office hours is the right venue for your question.

Review
(using spaceship.cpp!)

Functions, variables, for loops, console programs

I wanted to follow up on a couple of the questions asked during class yesterday...

● Can you declare two variables with the same name but within different scopes
of the same function (e.g. one inside a for loop and one before the loop)?
→ Yes, but this gets confusing quickly so avoid variables with the same names!

● Can you create two functions with the same name but different return types?
→ No, not if the return type is the only aspect that differs between the function
prototypes. But you are allowed to create two functions that have the same
name if they take different parameters (number or type). In this case, the
return types don’t matter. Again, this gets confusing quickly so try to avoid it!

#include <iostream>

using namespace std;

int main() {

 /* TODO: Your code goes here! */

 return 0;

}

Write a program that prints out the calls for a
spaceship that is about to launch.
Countdown the numbers from 10 to 1 and
then print “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print("Liftoff")

if __name__ == "__main__":

 main()

Python C++

Ed Example
(workspace)

https://us.edstem.org/courses/640/workspaces/pc9vA4KpBwdVc86QGC4Pik2yOO8wg2WF

Notes about Ed workspaces

● To immediately preserve work done during lecture, we’re going to set the
“Breakout Room X” workspaces to view-only right after lecture.

● We’ll be reusing the same breakout room workspaces every lecture, which
means we’ll also wipe the contents before the next day’s class (likely in the
morning before lecture).

● Feel free to download or fork the workspace after class to continue working on
the code independently or with others.

What’s special about
strings in C++?

string
A data type that represents a sequence of

characters

Definition

string
A data type that represents a sequence of

characters

Definition

Characters can be
letters, digits, symbols
(&, !, ~), etc.

Strings review

Strings are made up of characters of type char, and the characters of a
string can be accessed by the index in the string (this should be familiar):

' ' ' ' ' ' ' ' ' ' ' '

string activity
[demo + poll]

What are the key characteristics of strings in C++?

● Strings are mutable in C++
○ Unlike in Python and Java
○ But you must assign string indices to a character:

YES: word[1] = ‘a’; NO: word[1] = “a”;

What are the key characteristics of strings in C++?

● Strings are mutable in C++

● You can add characters to strings and strings to strings using += and +
○ Strings must use double quotes (“”) while characters use single (‘’).
○ There is a caveat you’ll see shortly

What are the key characteristics of strings in C++?

● Strings are mutable in C++

● You can add characters to strings and strings to strings using += and +
○ Strings must use double quotes (“”) while characters use single (‘’).
○ There is a caveat you’ll see shortly

● You can use logical operators to compare strings (and characters)

string and char
conventions
[demo]

string utility functions

Three categories of functions

● Built-in C++ char functions (<cctype> library)

● Built-in C++ string methods

● Stanford string library functions

<cctype> library
● #include <cctype>

● This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char
converted in some way (e.g., to uppercase)
○ isalnum: checks if a character is alphanumeric
○ isalpha: checks if a character is alphabetic
○ islower: checks if a character is lowercase
○ isupper: checks if a character is an uppercase character
○ isdigit: checks if a character is a digit
○ isxdigit: checks if a character is a hexadecimal character
○ iscntrl: checks if a character is a control character
○ isgraph: checks if a character is a graphical character
○ isspace: checks if a character is a space character
○ isblank: checks if a character is a blank character
○ isprint: checks if a character is a printing character
○ ispunct: checks if a character is a punctuation character
○ tolower: converts a character to lowercase
○ toupper: converts a character to uppercase

<cctype> library
● #include <cctype>

● This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char
converted in some way (e.g., to uppercase)
○ isalnum: checks if a character is alphanumeric
○ isalpha: checks if a character is alphabetic
○ islower: checks if a character is lowercase
○ isupper: checks if a character is an uppercase character
○ isdigit: checks if a character is a digit
○ isxdigit: checks if a character is a hexadecimal character
○ iscntrl: checks if a character is a control character
○ isgraph: checks if a character is a graphical character
○ isspace: checks if a character is a space character
○ isblank: checks if a character is a blank character
○ isprint: checks if a character is a printing character
○ ispunct: checks if a character is a punctuation character
○ tolower: converts a character to lowercase
○ toupper: converts a character to uppercase

char letter = 'L';

islower(letter);

//returns false

<cctype> library
● #include <cctype>

● This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char
converted in some way (e.g., to uppercase)
○ isalnum: checks if a character is alphanumeric
○ isalpha: checks if a character is alphabetic
○ islower: checks if a character is lowercase
○ isupper: checks if a character is an uppercase character
○ isdigit: checks if a character is a digit
○ isxdigit: checks if a character is a hexadecimal character
○ iscntrl: checks if a character is a control character
○ isgraph: checks if a character is a graphical character
○ isspace: checks if a character is a space character
○ isblank: checks if a character is a blank character
○ isprint: checks if a character is a printing character
○ ispunct: checks if a character is a punctuation character
○ tolower: converts a character to lowercase
○ toupper: converts a character to uppercase

string methods
#include <string>

● s.append(str): add text str to the end of a string
● s.compare(str): return -1, 0, or 1 depending on relative ordering
● s.erase(index, length): delete text from a string starting at given index
● s.find(str): return first index where the start of str appears in this string (returns

string::npos if not found)
● s.rfind(str): return last index where the start of str appears in this string (returns

string::npos if not found)
● s.insert(index, str): add text str into a string at a given index
● s.length() or s.size(): number of characters in this string
● s.replace(index, len, str): replaces len chars at index with text str
● s.substr(start, length) or s.substr(start): the next length characters

beginning at start (inclusive); if length omitted, grabs till end of string

string methods
#include <string>

● s.append(str): add text str to the end of a string
● s.compare(str): return -1, 0, or 1 depending on relative ordering
● s.erase(index, length): delete text from a string starting at given index
● s.find(str): return first index where the start of str appears in this string (returns

string::npos if not found)
● s.rfind(str): return last index where the start of str appears in this string (returns

string::npos if not found)
● s.insert(index, str): add text str into a string at a given index
● s.length() or s.size(): number of characters in this string
● s.replace(index, len, str): replaces len chars at index with text str
● s.substr(start, length) or s.substr(start): the next length characters

beginning at start (inclusive); if length omitted, grabs till end of string

Stanford string library functions
#include “strlib.h”

● endsWith(str, suffix)

startsWith(str, prefix): returns true if the given string begins or ends with the
given suffix/prefix text

● integerToString(int)

realToString(double)

stringToInteger(str)

stringToReal(str): returns a conversion between numbers and strings
● equalsIgnoreCase(s1, s2): true if s1 and s2 have same chars, ignoring casing
● toLowerCase(str): returns a lowercase version of a string
● toUpperCase(str): returns an uppercase version of a string
● trim(str): returns string with surrounding whitespace removed

Stanford string library functions
#include “strlib.h”

● endsWith(str, suffix)

startsWith(str, prefix): returns true if the given string begins or ends with the
given suffix/prefix text

● integerToString(int)

realToString(double)

stringToInteger(str)

stringToReal(str): returns a conversion between numbers and strings
● equalsIgnoreCase(s1, s2): true if s1 and s2 have same chars, ignoring casing
● toLowerCase(str): returns a lowercase version of a string
● toUpperCase(str): returns an uppercase version of a string
● trim(str): returns string with surrounding whitespace removed

Two types of
C++ strings
[poll]

Poll: What will happen with the following line of code?

string hiThere = "hi" + "there";

You would get…

● An error
● The string “hithere” stored in hiThere
● A garbage value stored in hiThere

Poll: What will happen with the following line of code?

string hiThere = "hi" + '?'

You would get…

● An error
● The string “hi?” stored in hiThere
● A garbage value stored in hiThere

C strings vs. C++ strings summary

● C strings have no methods
○ This is why you can’t do something like "hi".length() in C++

● Conversion fixes
○ Store the C string in a variable first to convert it to a C++ string
○ Use a conversion function

■ string("text"); converts the C string literal into a C++ string
■ string.c_str() returns a C string from a C++ string

● Takeaway: Beware the C string!

Announcements

Announcements

● Sections start today! Check cs198.stanford.edu to see your time.

● Assignment 0 is due today at midnight.

● Assignment 1 is out and is due next Tuesday at 11:59pm in your local timezone.
○ YEAH hours are at 6pm PDT tonight; no minors but they will be recorded.

● As a reminder, Nick and I have group and individual office hours (OH) every
week. Nick’s individual OH are tomorrow from 9-11am PDT!

http://cs198.stanford.edu

How do we test code in
CS106B?

Testing
Software and cathedrals are much the same – first we build them,
then we pray.
– Sam Redwine

Why is testing important?

Discuss in breakout rooms!

Why is testing important?

The hole in the ozone layer over
Antarctica remained undetected for
a long period of time because the
data analysis software used by
NASA in its project to map the
ozone layer had been designed to
ignore values that deviated greatly
from expected measurements.

Source

http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

In 1996, a European Ariane 5 rocket
was set to deliver a payload of
satellites into Earth orbit, but problems
with the software caused the launch
rocket to veer off its path a mere 37
seconds after launch. The problem
was the result of code reuse from the
launch system’s predecessor, Ariane
4, which had very different flight
conditions from Ariane 5.

Source

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

A 2002 study commissioned by the
National Institute of Standards and
Technology (referred to here) found
that software bugs cost the U.S.
economy $59.5 billion every year
(imagine the global costs…). The
study estimated that more than a
third of that amount, $22.2 billion,
could be eliminated by improved
testing.

Source

http://tvnz.co.nz/view/news_technology_story_skin/453830?format=html
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

● Testing can save money

Why is testing important?

● Testing can save money

● Testing can save lives

Why is testing important?

● Testing can save money

● Testing can save lives

● Testing can prevent disasters

Why is testing important?

● Testing can save money

● Testing can save lives

● Testing can prevent disasters

● Testing is a programmer's responsibility.
○ You must think about ethical considerations when you

develop code that impacts people.

What are good testing strategies?

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!
○ Use your critical thinking and analysis skills to identify a diverse

range of possible ways in which your code might be used.

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

edge case
Uses of your function/program that

represent extreme situations

Definition

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

edge case
Uses of your function/program that

represent extreme situations

Definition

For example, if your function takes in an
integer parameter, test what happens if the
value that is passed in negative, zero, a large
positive number, etc!

SimpleTest

What is SimpleTest?

● SimpleTest is a C++ library developed by some of the lecturers here at
Stanford that allows standalone, C++ unit testing

● For those of you coming from CS106A in Python, this is similar in
functionality to the doctest infrastructure that you learned

● We will see SimpleTest a lot this quarter! You will learn how to write
good, comprehensive suites of tests using this library, starting from the
very first assignment.

How does SimpleTest work?

CS106B Testing Guide
– make sure to read it!

http://web.stanford.edu/class/cs106b/testing

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

NO_TESTS
SELECTED_TESTS
ALL_TESTS

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

What’s next?

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Vectors and Grids

