
Trees
Is there any component of "Life after CS106B" that

you would like us to focus on in our final lecture
next week?

(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Today’s
questions

How can we better
organize data stored in a
linked data structure?

Today’s
topics

1. Linked Data Structure
Overview

2. Introduction to Trees

3. Trees in C++

Review
[linked data structures]

Linked Data Structures

● Last week, we explored linked lists, our first example of a linked data
structure.

Linked Data Structures

● Last week, we explored linked lists, our first example of a linked data
structure.

Data

Link0xfca0b000

ptr

Data

Link

Data

Link

PTR

Linked Data Structures

● Last week, we explored linked lists, our first example of a linked data
structure.

● Linked data structures are distinguished by the fact that they stored data in a
distributed manner. This means that the data is stored across many different
locations in computer memory.

Linked Data Structures

● Last week, we explored linked lists, our first example of a linked data
structure.

● Linked data structures are distinguished by the fact that they stored data in a
distributed manner. This means that the data is stored across many different
locations in computer memory.

● In order to organize this data, we had to bundle data alongside pointers in the
concept of a "node."

Linked Data Structures

● Last week, we explored linked lists, our first example of a linked data
structure.

● Linked data structures are distinguished by the fact that they stored data in a
distributed manner. This means that the data is stored across many different
locations in computer memory.

● In order to organize this data, we had to bundle data alongside pointers in the
concept of a "node."

● Using pointers allows us to create links to other nodes to impose structure.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.
○ Insertion/removal of elements of a linked list was very quick because it only

involved fast pointer rewiring operations. We never had to "shift" elements over to
make room.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.
○ Insertion/removal of elements of a linked list was very quick because it only

involved fast pointer rewiring operations. We never had to "shift" elements over to
make room.

○ Because all the data was stored in dynamic memory, expanding the size of the
linked list was very easy and never required an expensive "re-sizing" operation that
had to copy all the data.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

● However, we also ran into some limitations when it came to working with lists:

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

● However, we also ran into some limitations when it came to working with lists:
○ Data was organized in a linear structure, which meant the path to traverse between

any two nodes (specifically between the front and a node later on in the list) could
get very long.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

● However, we also ran into some limitations when it came to working with lists:
○ Data was organized in a linear structure, which meant the path to traverse between

any two nodes (specifically between the front and a node later on in the list) could
get very long.

○ Finding elements in a linked list is an O(n) operation, which can get slow when we
want to store many elements.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

● However, we also ran into some limitations when it came to working with lists:
○ Data was organized in a linear structure, which meant the path to traverse between

any two nodes (specifically between the front and a node later on in the list) could
get very long.

○ Finding elements in a linked list is an O(n) operation, which can get slow when we
want to store many elements.

○ We couldn't feasibly write recursive algorithms that traversed linked lists, due to
stack frame limits that came into play since traversal algorithms required one stack
frame per node.

Linked List Tradeoffs

● Storing data in a distributed (non-contiguous) manner had some distinct
advantages over working with arrays.

● However, we also ran into some limitations when it came to working with lists.

● Question: Can we organize data in a linked data structure in such a way that
the path between the "front" and any element in the structure is short (better
than O(n)) even if there are many elements?

How can we better organize
data stored in a linked data

structure?

Interactive Exercise
[borrowed from Keith Schwarz]

Take a deep breath.

And exhale...

Feel nicely oxygenated?

Beautiful art by Keith Schwarz

Beautiful art by Keith Schwarz

Key Idea: The distance from each element in this structure to the
top of the structure is small, even if there are many elements.

Trees

Throwback Thursday (on Monday)

● We've already seen trees before in this class… decision trees!

Throwback Thursday (on Monday)

● We've already seen trees before in this class… decision trees!

Throwback Thursday (on Monday)

● We've already seen trees before in this class… decision trees!

Throwback Thursday (on Monday)

● We've already seen trees before in this class… decision trees!

Throwback Thursday (on Monday)

● We've already seen trees before in this class… decision trees!

Trees in the Wild

● Trees are useful in other ways besides just visualizing recursive backtracking.

Trees in the Wild

● Trees are useful in other ways besides just visualizing recursive backtracking.

Trees can be
used to describe
hierarchies.

Trees in the Wild

● Trees are useful in other ways besides just visualizing recursive backtracking.

Trees are used
to model the
structure of
websites.

Trees in the Wild

● Trees are useful in other ways besides just visualizing recursive backtracking.

def run() {
 move();
 while (notFinished()) {
 if (isPathClear()) {
 move();
 } else {
 turnLeft();
 }
 move();
 }
}

Trees describe
the syntax
structure of
programs.

Trees in the Wild

● Trees are useful in other ways besides just visualizing recursive backtracking.

● But, it is not a coincidence that we first saw them appear in conjunction with
recursion.

Trees in the Wild

● Trees are useful in other ways besides just visualizing recursive backtracking.

● But, it is not a coincidence that we first saw them appear in conjunction with
recursion.

● Trees are inherently defined recursively!

What is a tree?

A tree is either...

What is a tree?

A tree is either...

An empty data
structure, or...

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

x

tree
A tree is hierarchical data organization

structure composed of a root value
linked to zero or more non-empty

subtrees.

Definition

Tree Terminology

Tree Terminology

A

B C D E F

G H I KJ

L

Tree Terminology

A

B C D E F

G H I KJ

L

A node...

Tree Terminology

A

B C D E F

G H I KJ

L

A node with 0 or
more non-empty
subtrees

Tree Terminology

A

B C D E F

G H I KJ

L

A node with 0 or
more non-empty
subtrees

Tree Terminology

A

B C D E F

G H I KJ

L

A node with 0 or
more non-empty
subtrees

Tree Terminology

A

B C D E F

G H I KJ

L

A node with 0 or
more non-empty
subtrees

Tree Terminology

A

B C D E F

G H I KJ

L

A node with 0 or
more non-empty
subtrees

Tree Terminology

A

B C D E F

G H I KJ

L

Tree Terminology

A

B C D E F

G H I KJ

L

A is the root node
of the tree

Tree Terminology

A

B C D E F

G H I KJ

L

B, C, D, E, and F
are children of A

Tree Terminology

A

B C D E F

G H I KJ

L

A is the parent of
B, C, D, E, and F

Tree Terminology

A

B C D E F

G H I KJ

L

B has no children. A
node with no children
is called a leaf node.

Tree Terminology

A

B C D E F

G H I KJ

L

B, G, H, I, D, E, J, and
L are all leaf nodes.

Tree Terminology

A

B C D E F

G H I KJ

L

G, H and I all have the
same parent. Nodes
with the same parent
are siblings.

Tree Terminology

A

B C D E F

G H I KJ

L

We can define a
path through the
tree between two
nodes.

Tree Terminology

A

B C D E F

G H I KJ

L

We can define a
path through the
tree between two
nodes.

Note: We can only follow the links in the direction the arrow points!

Tree Terminology

A

B C D E F

G H I KJ

L

The path from A to
L is A -> F -> K ->
L

Tree Terminology

A

B C D E F

G H I KJ

L

The length of the path is
number of edges it
contains. The path from
A to L has length 3.

Tree Terminology

A

B C D E F

G H I KJ

L

The depth of a node is the
length of its path to the
root.

Tree Terminology

A

B C D E F

G H I KJ

L

The depth of a node is the
length of its path to the
root.depth: 0

Tree Terminology

A

B C D E F

G H I KJ

L

The depth of a node is the
length of its path to the
root.depth: 0

depth: 1

Tree Terminology

A

B C D E F

G H I KJ

L

The depth of a node is the
length of its path to the
root.depth: 0

depth: 1

depth: 2

Tree Terminology

A

B C D E F

G H I KJ

L

The depth of a node is the
length of its path to the
root.depth: 0

depth: 1

depth: 2

depth: 3

Tree Terminology

A

B C D E F

G H I KJ

L

The height of a tree is
defined to be the number
of levels that a tree has.

Tree Terminology

A

B C D E F

G H I KJ

L

The height can also be defined
as the number of nodes along
the longest path from the
root to a leaf.

Tree Terminology

A

B C D E F

G H I KJ

L

The height can also be defined
as the number of nodes along
the longest path from the
root to a leaf.

Tree Terminology

A

B C D E F

G H I KJ

L

The height can also be defined
as the number of nodes along
the longest path from the
root to a leaf.

height = 4

Tree Terminology Summary

● Every non-empty tree has a root node that defines the "top" of the tree.

● Every node has 0 or more children nodes descended from it. Nodes with no
children are called leaf nodes.

● Every node in a tree has exactly one parent node (except for the root node).

● A path through the tree traverses edges between parents and their children.

● The depth of a node is the length of the path between the root and that node.
A tree's height is the number of nodes in the longest path through the tree.

Tree Properties

Tree Properties

● Any node in a tree can only have one parent.

Tree Properties

● Any node in a tree can only have one parent.

C

A B

Tree Properties

● Any node in a tree can only have one parent.

C

A B

Not a tree!

Tree Properties

● Any node in a tree can only have one parent.

● The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

Tree Properties

● Any node in a tree can only have one parent.

● The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

A

B C

D

Tree Properties

● Any node in a tree can only have one parent.

● The tree cannot have any cycles. That is, there should be no way to make a
complete loop through the tree.

A

B C

D

Not a tree!

Announcements

Announcements

● Assignment 5 is due on Tuesday, August 4 at 11:59pm PDT.

● Assignment 6 will be released by the end of the day on Wednesday and will be
be due on Wednesday, August 12 at 11:59pm PDT. This is a hard deadline –
there is no grace period and no submissions will be accepted after this time.

● Due to the end of quarter timeline, there will be no revisions on Assignments
5 and 6.

● Final project reports are due on Sunday, August 9 at 11:59pm PDT. You will
have the opportunity to schedule your final presentation time after submitting.

Trees in C++

Binary Trees

● In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

Binary Trees

● In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

● However, when working with trees in computer programs, it is common to
work mostly with binary trees.

Binary Trees

● In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

● However, when working with trees in computer programs, it is common to
work mostly with binary trees.

● A binary tree is a tree where every node has either 0, 1, or 2 children. No node
in a binary tree can have more than 2 children.

Binary Trees

● In general, we've seen that nodes in a tree can have variable numbers of
children (subtrees) and sometimes very, very many.

● However, when working with trees in computer programs, it is common to
work mostly with binary trees.

● A binary tree is a tree where every node has either 0, 1, or 2 children. No node
in a binary tree can have more than 2 children.

● Typically, the two children of a node in a binary tree are referred to as the left
child and the right child.

Binary Trees

A

B C

D

Binary Trees

A

B C

D

Binary Tree!

Binary Trees

A

B C D E F

G H I KJ

L

A

B C

D

Binary Tree!

Binary Trees

A

B C D E F

G H I KJ

L

A

B C

D

Binary Tree! Not a binary tree!

Building Trees Programmatically

● To build a tree in C++, we need a new version of the Node struct we've seen
before.

Building Trees Programmatically

● To build a tree in C++, we need a new version of the Node struct we've seen
before.

● In this case, we want each Node to have a data value (like a linked list), but
now we want two pointers, one to the left child, and one to the right child.

Building Trees Programmatically

● To build a tree in C++, we need a new version of the Node struct we've seen
before.

● In this case, we want each Node to have a data value (like a linked list), but
now we want two pointers, one to the left child, and one to the right child.

struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

What is a tree?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

x

What is a tree in C++?

A tree is either...

An empty data
structure, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

x

What is a tree in C++?

A tree is either...

An empty tree
represented by
nullptr, or...

A single node
(parent), with zero or
more non-empty
subtrees (children)

x

PTR

What is a tree in C++?

A tree is either...

An empty tree
represented by
nullptr, or...

A single TreeNode,
with 0, 1, or 2
non-null pointers to
other TreeNodes

PTR

"data"

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

PTR PTR

"coconut"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

PTR

"coconut"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

PTR

"coconut"

PTR

"banana"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

PTR

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

"strawberry"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

"strawberry"

PTR

"taro"

PTR PTR

Building Trees Programmatically
struct TreeNode {
 string data;
 TreeNode* left;
 TreeNode* right;
}

"pineapple"

"coconut"

"banana"

PTR PTR

"durian"

PTR PTR

"strawberry"

PTR

"taro"

PTR PTR

Note: Trees do not have to be complete, like heaps. Any node can have 0, 1, or 2 children.

Let's code it!
buildExampleTree()

Building a Tree Takeaways

● Building a tree is very similar to the process of building a linked list.

● We create new nodes of the tree by dynamically allocating memory.

● We integrate these new nodes into the tree by rewiring the left and right
pointers of existing nodes in the tree.

Tree Traversals

Tree Traversals

● Often, we will want to "do something" with each node in a tree. Like linked lists,
we can do so by traversing the tree. With the branching involved, this is a
slightly more involved process than traversing a linked list!

Tree Traversals

● Often, we will want to "do something" with each node in a tree. Like linked lists,
we can do so by traversing the tree. With the branching involved, this is a
slightly more involved process than traversing a linked list!

● There are three main ways to traverse a binary tree:
○ Pre-order traversal
○ In-order traversal
○ Post-order traversal

Tree Traversals

● Often, we will want to "do something" with each node in a tree. Like linked lists,
we can do so by traversing the tree. With the branching involved, this is a
slightly more involved process than traversing a linked list!

● There are three main ways to traverse a binary tree:
○ Pre-order traversal
○ In-order traversal
○ Post-order traversal

● Due to the recursive nature of trees, all of these algorithms are most easily
defined recursively.

Pre-order Traversal

● The algorithm for a pre-order traversal is defined as follows:
○ "Do something" with the current node
○ Traverse the left subtree
○ Traverse the right subtree

● For example purposes, let's have our "do something" to be printing the
contents of the current node, which will allow us to print the overall tree.

Let's code it!
preorderPrintTree()

Pre-order Traversal

● The algorithm for a pre-order traversal is defined as follows:
○ "Do something" with the current node
○ Traverse the left subtree
○ Traverse the right subtree

● For example purposes, let's have our "do something" be printing the contents
of the current node, which will allow us to print the overall tree.

● Output: pineapple coconut banana durian strawberry taro

In-order Traversal

● The algorithm for an in-order traversal is defined as follows:
○ Traverse the left subtree
○ "Do something" with the current node
○ Traverse the right subtree

Let's code it!
inorderPrintTree()

In-order Traversal

● The algorithm for an in-order traversal is defined as follows:
○ Traverse the left subtree
○ "Do something" with the current node
○ Traverse the right subtree

● Output: banana coconut durian pineapple strawberry taro

● Observation: The output of this traversal gives as all the values in alphabetical
order. Is this a coincidence?
○ No! We'll see why tomorrow!

Post-order Traversal

● The algorithm for a post-order traversal is defined as follows:
○ Traverse the left subtree
○ Traverse the right subtree
○ "Do something" with the current node

Try it yourself!
postorderPrintTree()

Post-order Traversal

● The algorithm for a post-order traversal is defined as follows:
○ Traverse the left subtree
○ Traverse the right subtree
○ "Do something" with the current node

● Output: banana durian coconut taro strawberry pineapple

● Application: Freeing trees! (we'll see this in lecture tomorrow)

Summary

Trees Summary

● Trees allow us to organize information in a linked data structure such that the
distance to any element is short, even if there are many elements.

● Trees organize nodes in a hierarchical manner, where each element contains
connections to children nodes that exist "lower" in the tree.

● There are three main ways to traverse the nodes in a tree, and each type of
traversal visits the nodes of the tree in a distinctly different order.

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Binary Search Trees

