
Using Abstractions:
Breadth-First Search

What new data structures have you recently
noticed in your day-to-day life?

(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Today’s
question

How can we use the
unique properties of
different abstractions to
solve problems?

Today’s
topics

1. Review

2. Implementing
Breadth-First Search

3. Nested Data Structures
(time-permitting)

Review
(sets and maps)

What is a set?

● A set is a collection of elements with
no duplicates.

● Sets are faster than ordered data
structures like vectors – since there are no duplicates, it’s faster for them to
find things.
○ (Later in the quarter we’ll learn about the details of the underlying

implementation that makes this abstraction efficient.)
○ We’ll formally define “faster” on Thursday.

● Sets don’t have indices!

What is a map?

● A map is a collection of key/value
pairs, and the key is used to quickly find
the value.

● Other terms you may hear for a map are dictionary (Python) or associative
array.

● A map is an alternative to an ordered data structure, where the “indices” no
longer need to be integers.

Ordered ADTs

Elements accessible by indices:

● Vectors (1D)
● Grids (2D)

Elements not accessible by indices:

● Queues (FIFO)
● Stacks (LIFO)

Unordered ADTs

● Sets (elements unique)
● Keys (keys unique)

Useful when numerical ordering of
data isn’t optimal

Activity:
Counting Sort

Counting Sort

● Sorting is a fundamental topic in computer science and one that we will revisit
in more depth later this quarter

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort

● Sorting is a fundamental topic in computer science and one that we will revisit
in more depth later this quarter

● For now, let's consider this question: how would you efficiently sort all the
letters in a word in alphabetical order?
○ How can we take advantage of some of the data structures we've recently learned about to

meaningfully structure the data that we want to sort?

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort

● Sorting is a fundamental topic in computer science and one that we will revisit
in more depth later this quarter

● For now, let's consider this question: how would you efficiently sort all the
letters in a word in alphabetical order?
○ How can we take advantage of some of the data structures we've recently learned about to

meaningfully structure the data that we want to sort?

● Idea: If we can tally up how many times each of the letters from 'a' to 'z' shows
up, we can then build a new string composed of the correct number of 'a's,
followed by the correct number of 'b's, … etc.

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Counting Sort Example

Example and slides taken from a slide deck by Keith Schwarz

Mission
Accomplished!

Counting Sort Pseudocode

Example and slides taken from a slide deck by Keith Schwarz

● Loop over the word and build a frequency map of
all letters that appear in the original string

● Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter

● Return the newly generated string

Counting Sort Pseudocode

Example and slides taken from a slide deck by Keith Schwarz

● Loop over the word and build a frequency map of
all letters that appear in the original string

● Loop through all letters from 'a' to 'z' and build up
a new string with the right amount of each letter

● Return the newly generated string

Provided Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
 Map<char, int> freqMap;
 for (char ch: s) {
 freqMap[ch] = freqMap[ch] + 1;
 }

 string sortedString;
 for (char ch = 'a'; ch <= 'z'; ch++) {

 }
 return sortedString;
}

Provided Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
 Map<char, int> freqMap;
 for (char ch: s) {
 freqMap[ch] = freqMap[ch] + 1;
 }

 string sortedString;
 for (char ch = 'a'; ch <= 'z'; ch++) {

/* TODO: Generate pseudocode to complete the algorithm! */
 }
 return sortedString;
}

Activity: Write
pseudocode to
complete the algorithm
[breakout rooms + Ed workspaces]

Activity: Write
pseudocode to
complete the algorithm
[breakout rooms + Ed workspaces]

Challenge for home: What other types of data
could you efficiently sort in this manner?

Counting Sort Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
 Map<char, int> freqMap;
 for (char ch: s) {
 // taking advantage of map auto-insertion!
 freqMap[ch] = freqMap[ch] + 1;
 }

 string sortedString;
 for (char ch = 'a'; ch <= 'z'; ch++) {
 if (freqMap.containsKey(ch)) {
 for (int i = 0; i < freqMap[ch]; i++) {
 sortedString += charToString(ch);
 }
 }
 }
 return sortedString;
}

Counting Sort Code

Example and slides taken from a slide deck by Keith Schwarz

string countingSort(string s) {
 Map<char, int> freqMap;
 for (char ch: s) {
 // taking advantage of map auto-insertion!
 freqMap[ch] = freqMap[ch] + 1;
 }

 string sortedString;
 for (char ch = 'a'; ch <= 'z'; ch++) {
 if (freqMap.containsKey(ch)) {
 for (int i = 0; i < freqMap[ch]; i++) {
 sortedString += charToString(ch);
 }
 }
 }
 return sortedString;
}

This check isn't strictly required, but
it does avoid unnecessary things being
added to the map via auto-insertion

How can we use the unique
properties of different
abstractions to solve

problems?

Examples of interesting problems to solve using
ADTs
● Simulate potential impacts of flooding on a topographical landscape (how does

water flow outwards from a source and settle into the surrounding areas)
● Generate simulated text in the style of a certain author. Similarly, do textual

analysis to determine who the author of a provided piece of text was.
● Spell check and autocomplete for a word document editor
● Manage information about the natural landmarks and state parks in California

to help tourists plan their trip to the state
● Develop a ticketing management system for Stanford Stadium
● Aggregate and analyze reviews for an online shopping website
● Solve fun puzzles

Examples of interesting problems to solve using
ADTs
● Simulate potential impacts of flooding on a topographical landscape (how does

water flow outwards from a source and settle into the surrounding areas)
● Generate simulated text in the style of a certain author. Similarly, do textual

analysis to determine who the author of a provided piece of text was.
● Spell check and autocomplete for a word document editor
● Manage information about the natural landmarks and state parks in California

to help tourists plan their trip to the state
● Develop a ticketing management system for Stanford Stadium
● Aggregate and analyze reviews for an online shopping website
● Solve fun puzzles

Word Ladders

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

h

start
word

destination
word

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

r

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

r

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

r

h

How can we come up
with an algorithm to
generate these word
ladders?

Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem

Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem
○ Start at the start word
○ Make an educated guess about what letter to change first
○ Modify that letter to get to a new English word
○ From there, make another educated guess about which letter to change and modify that letter
○ Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
○ If you hit a dead end, start over again, taking a different first step

Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem
○ Start at the start word
○ Make an educated guess about what letter to change first
○ Modify that letter to get to a new English word
○ From there, make another educated guess about which letter to change and modify that letter
○ Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
○ If you hit a dead end, start over again, taking a different first step

● What are the issues with this approach?
○ Requires intuition – does a computer have intuition?
○ Unorganized – no organized strategy for the exploration
○ No guarantee that you'll ever find a solution!

Breadth-First Search

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word

ladder is relatively easy – we look at all words that are one letter away from the current word

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word

ladder is relatively easy – we look at all words that are one letter away from the current word

● What's the next simplest possible word ladder we could find?
○ If the word ladder requires two steps, then we can break down the problem into the problem of

exploring one step away from all the words that are one step away from the starting word

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word

ladder is relatively easy – we look at all words that are one letter away from the current word

● What's the next simplest possible word ladder we could find?
○ If the word ladder requires two steps, then we can break down the problem into the problem of

exploring one step away from all the words that are one step away from the starting word

● Important observation: In order to keep our search organized, we first
explore all word ladders of "length" 1 before we explore any word ladders of
"length" 2, and so on.

BFS Example

Breadth-First Search Example

● Let's try to apply this approach to find a word ladder starting at the word "map"
and ending at the word "way"

Breadth-First Search Example

map

start: map
destination: way

Breadth-First Search Example

map

start: map
destination: way

0 steps away

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

may

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap Note: For the sake of
brevity/demonstration, we
will not enumerate all
possible words that are 1
step away

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

Observation: 2
steps away from
"map" is really just 1
step away from any
of its neighbors

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Visiting a word we've
already been at
before is basically like
going backwards in
our search. We want
to avoid this at all
costs!

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Idea: Keep track of a
collection of visited
words, and don't
double visit

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

man

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

man

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

way

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

way

Success! We have
found a valid word
ladder
map -> may -> way

Announcements

Announcements

● The Assignment 1 grace period expires tonight at 11:59pm in your timezone.
We cannot accept any submissions after the grace period expires, barring
extenuating circumstances.

● Assignment 2 will be out by the end-of-the-day today.
○ YEAH hours: Hosted by Trip this Thursday, 7/2 at 7pm PDT. The Zoom info

is posted on the Zoom details page of the course website

● If you haven't checked it out yet, the C++ survey follow-up thread we posted
over the weekend is a super awesome resource to learn more about C++ and
get tips on your transition to C++ from other programming languages.

https://us.edstem.org/courses/640/discussion/83261

Formalizing BFS

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

● A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

● A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

● A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Activity: Discuss which
data structures to use
[breakout rooms]

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

● A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

● A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so

far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

● A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so

far and have yet to explore

○ Queue<Stack<string>>
● A data structure to keep track of all the words that we've explored so far, so

that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so

far and have yet to explore

○ Queue<Stack<string>>
● A data structure to keep track of all the words that we've explored so far, so

that we avoid getting stuck in loops

○ Set<string>

Breadth-First Search Pseudocode

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one
letter away from the current word
Loop over all neighbor words

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one
letter away from the current word
Loop over all neighbor words

If the neighbor hasn't yet been visited

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one
letter away from the current word
Loop over all neighbor words

If the neighbor hasn't yet been visited
Create a copy of the current ladder
Add the neighbor to the top of the new ladder and mark it visited
Add the new ladder to the back of the queue of partial ladders

Live Coding:
Implementing BFS
[Qt Creator]

Live Coding:
Implementing BFS
[Qt Creator]

We hope that you find this to be a helpful resource when working on
Assignment 2. However, we do not encourage trying to copy the code as a
starting point. The problems are distinctly different, and you will benefit from
explicitly developing your own problem-specific pseudocode first.

Nested Data Structures

Nested Data Structures

● We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

Nested Data Structures

● We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

Nested Data Structures

● We've already seen one example of nested data structures when we used the
Queue<Stack<string>> to keep track of our search for word ladders.

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

● You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Quick lookup by animal name

Nested Data Structures Example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Store multiple, ordered feeding
times per animal

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

How do we use modify the internal
values of this map?

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

feedingTimes

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

Which of the following three snippets of
code will correctly update the state of the
map?

1. feedingTimes["lumpy"].add
("4:00");

2. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] =
times;

feedingTimes

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Goal: We want to add a second feeding
time of 4:00 for "lumpy".

Which of the following three snippets of
code will correctly update the state of the
map?

1. feedingTimes["lumpy"].add
("4:00");

2. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times =
feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] =
times;

feedingTimes

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.
○ feedingTimes["lumpy"].add("4:00");

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.
○ feedingTimes["lumpy"].add("4:00");

● However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.
○ Vector<string> times = feedingTimes["lumpy"]; // this makes a copy

times.add("4:00"); // modifies the copy, not the actual map value!!!

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.
○ feedingTimes["lumpy"].add("4:00");

● However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.
○ Vector<string> times = feedingTimes["lumpy"]; // this makes a copy

times.add("4:00"); // modifies the copy, not the actual map value!!!
● If you choose to store the internal data structure in a variable, you must do an

explicit reassignment to get your changes to persist
○ Vector<string> times = feedingTimes["lumpy"]; // this makes a copy

times.add("4:00"); // modifies the copy
feedingTimes["lumpy"] = times; // stores the modified copy in the map

Nested ADTs Summary

● Powerful
○ Can express highly structured and complex data
○ Used in many real-world systems

● Tricky
○ With increased complexity comes increased cognitive load in differentiating between the levels

of information stored at each level of the nesting
○ Specifically in C++, working with nested data structures can be tricky due to the fact that

references and copies show up at different points in time. Follow the correct paradigms
presented earlier to stay on track!

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

testing
recursive

problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

algorithmic
analysis

Core
Tools

Big O and Algorithmic Analysis

