Why We Use Recursion

Which do you prefer: iteration or recursion? Include
a short phrase explaining why.
(put your answers the chat)

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic algorithms
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis

Why is recursion such a
powerful problem-solving

guestion tool?

Today'’s

Today'’s
topics

Review

Elegance

Efficiency
(the return of Big O)

Recursive Backtracking

Review

(fractals)

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :
arranged in a structured way.

An order-3 tree

An order-0 tree is nothing at all. -

An order-n tree is a line with two /)\ -~ '.. /\ /' a‘

smaller order- (n-1) trees starting ~ ~§ /

at the end of that line. ~ - ~\
—— ’

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

Sierpinski Carpet

void drawSierpinskiCarpet(GWindow& window, double x, double y, double size,
// Base case: A carpet of order © is a filled square.
if (order == 0) {
drawSquare(window, X, y, size);
} else {
for (int row = @; row < 3; row++) {
for (int col = @; col < 3; col++) {
// The only square to skip is the very center one.
if (row != 1 || col != 1) {
double newX = X + col * size / 3;
double newY =y + row * size / 3;
drawSierpinskiCarpet(window, newX, newY, size / 3, order

int order) {

- 1);

lteration + Recursion

e [t's completely reasonable to mix iteration and recursion in the same function.

e Here, we're firing off eight recursive calls, and the easiest way to do that is with
a double for loop.

® Recursion doesn’t mean “the absence of iteration.” It just means “solving a
problem by solving smaller copies of that same problem.”

e Iteration and recursion can be very powerful in combination!

Homework from yesterday

e Play Towers of Hanoi:

e Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

e Extra challenge (optional): How would you define this problem

recursively?

o Don’t worry about data structures here. Assume we have a function moveDisk (X, Y)
that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html

Why do we use recursion?

Why do we use recursion?

e FElegance
o Allows us to solve problems with very clean and concise code

e [Efficiency
o Allows us to accomplish better runtimes when solving problems

e Dynamic
o Allows us to solve problems that are hard to solve iteratively

An elegant example:
Towers of Hanoi

Pseudocode for 3 disks
3 DISKS
| (1) | I |
A B C A B C
(2) (3) (4)
(5) {6) (?)
B - +’ A B +'

1) Move disk 1to destination (5) Move disk 1to source
2) Move disk 2 to auxiliary (6) Move disk 2 to destination

(
(
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination

Pseudocode for 3 disks
3 DISKS WA&t I.f we &ldf/ a
(1
_.+ L .-+_l_1|:-_ Fourth dick?
(2) 3 (4)
(5) (6))]
B - —aTw +' A B +'

1) Move disk 1to destination (5) Move disk 1to source
2) Move disk 2 to auxiliary (6) Move disk 2 to destination

(
(
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination

Towers of Hanoi with 4 disks

source auxiliary destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.

source auxiliary destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.
o We need to get the top three disks out of the way.

source auxiliary destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.
o We need to get the top three disks out of the way.
o We already have an algorithm for moving three disks from a source peg to
a destination peg!

source auxiliary destination

Pseudocode for 3 disks : Move dicks to

3 DISKS aaxi/iary I ctead 0{
1
..* .A -L_ destin ation!
A B C A B C
2) {3) 4)
A B C A B C A B C
(5) (6) | (N | |
S
A B C A B C A B C

1) Move disk 1to destination (5) Move disk 1to source
2) Move disk 2 to auxiliary (6) Move disk 2 to destination

(
(
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.

source auxiliary destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.

source auxiliary destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.
e Now we need to move the stack of three from auxiliary to destination.

source auxiliary destination

Towers of Hanoi with 4 disks

e We want to first move the biggest disk over to the destination peg.
e Now we need to move the stack of three from auxiliary to destination.

(/g’e our
existing 3 ~dick
a/garithm./
I

source auxiliary destination

Pseudocode for 3 disks : Move dicks

3 DISKS From aux//ia./fy
(1
..*. ..‘. .L_ instead of covrce!
A B C A B C
(2) (3) (4
A B C A B C A B C
(5) {(6) | €)) | |
L .
A B C A B C A B C

1) Move disk 1to destination (5) Move disk 1to source
2) Move disk 2 to auxiliary (6) Move disk 2 to destination

(
(
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination

Discuss in breakouts:
How could we define
the Towers of Hanoi
solution recursively?

Towers of Hanoi
solution

[live coding]

An efficient example:
Binary Search

Finding a number in a sorted list

1125181375977]82|89 101

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Where ic §97

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Idea #1: We covld just go through each element

in order and do a linear search.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Ue couvld Just go through each element in order

and do a linear cearch.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

(inear cearch ic 0(n)

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Con we do better? Con we take aa/ua.htage of
the ctructvre of the data?

ADT Big-O Matrix

e \ectors e Queues e Sets

o .size() - O(1) o .size() - O(1) o .size() - O(1)

o .add() - O(1) o .peek() - O(1) O .isEmpty() - O(1)

o wv[i] - O(1) O .enqueue() - 0O(1) 0 .add() - 2?27

o .insert() - O(n) 0 .dequeue () - 0O(1) O .remove () - 2?27

o .remove() - O(n) O .isEmpty () - O(1) o .contains () - ?°?°?

0 .clear() - O(n) O traversal - O(n) O traversal - O(n)

o traversal - O(n) e Stacks e Maps

e Grids o .size() - 0O(1) o .size() - O(1)

o .numRows () /.numCols () o .peek() - 0O(1) O .isEmpty () - O(1)
- 0(1) o .push() - O(1) o ml[key] - ??27

ogl[i]l[j]1 - O(1) o .pop() - O(1) o .contains () - 2?7

0 .inBounds () - O(1) O .isEmpty () - O(1) o traversal - O(n)

o traversal - O(n?) 0 traversal - O(n)

ADT Big-O Matrix

e \ectors

o .size() - 0O(1)

0 .add() - 0O(1)

o wv[i] - O(1)

O .insert() - O(n)

O .remove() — O(n)

0 .clear() - O(n)

0 traversal - O(n)

e Grids

o .numRows () /.numCols ()
- 0(1)

ocgl[i][3] - O(1)
O .inBounds () - O(1)
o traversal - O(n?)

o O O O O O

o O O O O O

Queues

.size() - O(1)
.peek () - O(1)
.enqueue () - 0(1)
.dequeue () - 0O(1)
.isEmpty () - O(1)
traversal - O(n)
Stacks

.size() - O(1)
.peek () - O(1)
.push() - 0(1)
.pop() - O(1)
.isEmpty () - O(1)
traversal - O(n)

o 0 O O O O

o 0 O O O

Sets

.size() - 0O(1)
.isEmpty () - O(1)

.add() - 2?7
.remove () - 2?7
.contains () - ?°?°?

traversal - O(n)

Maps

.size() - O(1)
.isEmpty () - O(1)

ml[key] - 2?7

.contains () - ?°?°?
traversal - O(n)

: Sets and Maps don’t actually use a sorted
list to store information, but the general idea of
searching sorted data is similar.

Remember how their e/emeutr/éeyc alwayg

printed out in alphabetical order?

[\

: Sets and Maps don’t actually use a sorted
list to store information, but the general idea of
searching sorted data is similar.

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Where ic §97

ldea #2: Binary search

e Eliminate half of the data at each step.

e Algorithm: Check the middle element at (startIndex + endIndex) / 2
o If the middle element is bigger than your desired value, eliminate the right
half of the data and repeat.
o If the middle element is smaller than your desired value, eliminate the left
half of the data and repeat.
o Otherwise, you’ve found your element!

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Where ic §97

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Start by looking at index:
(startIndex + endIndex) / 2

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Start by looking at index:
(6 +9) / 2

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Start by looking at index:
4

Finding a number in a sorted list

1125181375977]82|89 101

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Joo emall

Finding a number in a sorted list

59 | 77 | 82 | 89 | 101

5 6 7 8 9

Eliminate left half

Finding a number in a sorted list

59 | 77 | 82 | 89 | 101

5 6 7 8 9
(startIndex + endIndex) / 2 =
(5+9) /2=
7

Finding a number in a sorted list

59 | 77 | 82 | 89 | 101

5 6 7 8 9
(startIndex + endIndex) / 2 =
(5+9) /2=
7

Finding a number in a sorted list

59 | 77 | 82 | 89 | 101

5 6 7 8 9

Joo emall

Finding a number in a sorted list

39 | 101

Eliminate left half

Finding a number in a sorted list

39 [101
8 9
(startIndex + endIndex) / 2 =
(8 +9)/ 2=
8

Finding a number in a sorted list

39 [101
8 9
(startIndex + endIndex) / 2 =
(8 +9)/ 2=
8

Finding a number in a sorted list

39 | 101

§u008§'§’./

Defining binary search recursively

e Algorithm: Check the middle element at (startIndex + endIndex) / 2
o If the middle element is bigger than your desired value, eliminate the right half of
the data and repeat.
o If the middle element is smaller than your desired value, eliminate the left half of the
data and repeat.

O Otherwise, you’ve found your element!

Defining binary search recursively

e Algorithm: Check the middle element at (startIndex + endIndex) / 2
o If the middle element is bigger than your desired value, eliminate the right half of
the data and repeat.
o If the middle element is smaller than your desired value, eliminate the left half of the
data and repeat.

O Otherwise, you’ve found your element!

® Recursive cases
o Element at middle is too small = binarySearch(right half of data)
o Element at middle is too large = binarySearch(left half of data)

Defining binary search recursively

e Algorithm: Check the middle element at (startIndex + endIndex) / 2
o If the middle element is bigger than your desired value, eliminate the right half of
the data and repeat.
o If the middle element is smaller than your desired value, eliminate the left half of the
data and repeat.

O Otherwise, you’ve found your element!

® Recursive cases
o Element at middle is too small = binarySearch(right half of data)
o Element at middle is too large = binarySearch(left half of data)
e Base cases

o Element at middle == desired element
o Desired element is not in your data

Discuss in breakouts:

Read the code for
binarySearch() and identify
the base/recursive cases.

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
if (startIndex > endIndex) {
return -1;

}

int middleIndex = (startIndex + endIndex) / 2;
int currentVal = v[middleIndex];
if (targetVal == currentVal) {
return middleIndex;
} else if (targetVal < currentVal) {
return binarySearch(v, targetVal, startIndex, middleIndex - 1);
} else {
return binarySearch(v, targetVal, middleIndex + 1, endIndex);

}

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
if (startIndex > endIndex) {
return -1;

}

int middleIndex = (startIndex + endIndex) / 2;
int currentVal = v[middleIndex];
if (targetVal == currentVal) {

return middleIndex;
} else if (targetVal < currentVal) {

return binarySearch(v, targetVal, startIndex, middleIndex - 1);
} else {

return binarySearch(v, targetVal, middleIndex + 1, endIndex);

Bagce cacee

}

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
if (startIndex > endIndex) {
return -1;

}

int middleIndex = (startIndex + endIndex) / 2;
int currentVal = v[middleIndex];
if (targetVal == currentVal) {

return middleIndex;
} else if (targetVal < currentVal) {

return binarySearch(v, targetVal, startIndex, middleIndex - 1);
} else {

return binarySearch(v, targetVal, middleIndex + 1, endIndex);
}

Recursive cace¢

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
if (startIndex > endIndex) {
return -1;

} We don't want the veer to have

int middleIndex = (startIndex + endIndex) / 2; Lo pase thece in, but we need

int currentVal = v[middleIndex]; 4 J P
if (targetVal == currentVal) { Lhem Lo vpdale our cearch range

return middleIndex;
} else if (targetVal < currentVal) {

return binarySearch(v, targetVal, startIndex, middleIndex - 1);
} else {

return binarySearch(v, targetVal, middleIndex + 1, endIndex);

}

Binary search code

int binarySearch(Vector<int>& v, int targetVal) {
return binarySearchHelper(v, targetVal, 0, v.size() - 1);

int binarySearchHelper(Vector<int>& v, int targetVal, int startIndex, int endIndex) {

}

Uce a recurcive helper function for the extra parameterc!
(binarySearchHelper would have the came code as the previovs clide)

Finding a number in a sorted list

1125181375977]82|89 101

0] 1 2 3 4 5 6 7 8 9

Whate the runtime?

Binary search runtime

e For data of size N, it eliminates half until 1 element remains:

N, N/2, N/4, N/8, ..., 4, 2, 1

o How many divisions does it take?

Binary search runtime

e For data of size N, it eliminates half until 1 element remains.

e Think of it from the other direction:
o How many times do | have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

o Call this number of multiplications x:

Binary search runtime

e For data of size N, it eliminates half until 1 element remains.

e Think of it from the other direction:
o How many times do | have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N
o Call this number of multiplications x:

2% = N
x = log,N

e Binary search has logarithmic Big-O: 0(1log N)

binarysearch.cpp

[demo]

Logarithmic runtime

e Better than linear

e A common runtime
when you’re able to
“divide and conquer” s
ime
in your algorithm, like O(log n)
with binary search

O(1)

Data Input

ADT Big-O Matrix

e \ectors

o .size() - 0O(1)

0 .add() - 0O(1)

o wv[i] - O(1)

O .insert() - O(n)

O .remove() — O(n)

0 .clear() - O(n)

0 traversal - O(n)

e Grids

o .numRows () /.numCols ()
- 0(1)

ocgl[i][3] - O(1)
O .inBounds () - O(1)
o traversal - O(n?)

o O O O O O

o O O O O O

Queues

.size() - O(1)
.peek () - O(1)
.enqueue () - 0(1)
.dequeue () - 0O(1)
.isEmpty () - O(1)
traversal - O(n)
Stacks

.size() - O(1)
.peek () - O(1)
.push() - 0(1)
.pop() - O(1)
.isEmpty () - O(1)
traversal - O(n)

o 0 O O O O

o 0 O O O

Sets

.size() - 0O(1)
.isEmpty () - O(1)

.add() - 2?7
.remove () - 2?7
.contains () - ?°?°?

traversal - O(n)

Maps

.size() - O(1)
.isEmpty () - O(1)

ml[key] - 2?7

.contains () - ?°?°?
traversal - O(n)

ADT Big-O Matrix

e \ectors e Queues e Sets
o .size() - O(1) o .size() - O(1) o .size() - O(1)
o .add() - O(1) o .peek() - O(1) O .isEmpty() - O(1)
o wv[i] - O(1) O .enqueue() - 0O(1) 0 .add() - O(log(n))
o .insert() - O(n) 0 .dequeue () - 0O(1) O .remove() - O(log(n))
o .remove() - O(n) O .isEmpty () — O(1) o .contains() - O(log(n))
0 .clear() - O(n) O traversal - O(n) O traversal - O(n)
o traversal - O(n) e Stacks e Maps
e Grids .size() - O(1) .size() - O(1)
o .numRows () /.numCols () .peek () - 0O(1) .isEmpty () - O(1)
- 0(1) .push() - 0(1) m[key] - O(log(n))

ogl[i]l[j] - 0O(1) .pop() - O(1) .contains () - O(log(n))
O .inBounds () - O(1) .isEmpty () - O(1)

o traversal - O(n?) traversal - O(n)

o O O O O

traversal - O(n)

o O O O O O

Announcements

Announcements

e Assignment 2 is due today at 11:59pm PDT.

e Assignment 3 will be released by the end of the day tomorrow.

e We will be releasing more concrete information about the diagnostic (including
practice problems) over the weekend.

A dynamic example:
Exploring many
possibilities

Limits of iteration

e So far, we've seen problems that could be solved iteratively or recursively.
o Depending on the problem, you could make the argument that one of the
approaches was stylistically preferable or easier to understand.
o But both got the job donel

Limits of iteration

e However, there is a whole class of problems that are very difficult, or nearly
impossible, to solve with an iterative approach.
o These problems have the goal of exploring

o Because iteration is inherently linear (and not dynamic), it is usually used
to build up a single solution without exploring many possible alternatives.
o Recursion allows us to explore many potential possibilities at once via
that comes when we have multiple recursive calls.

Limits of iteration

e To solve these problems and generate many possible solutions, we will have to
learn a new problem-solving technique called :

o The key steps in recursive backtracking are that you make a choice about
how to generate a solution, you use recursion to explore that choice, and
then you might make a different choice and repeat the process.

o This paradigm is called “ 7

Limits of iteration

e So far, we've seen problems that could be solved iteratively or recursively.

e However, there is a whole class of problems that are very difficult, or nearly
impossible, to solve with an iterative approach.

e To solve these problems and generate many possible solutions, we will have to
learn a new problem-solving technique called

(ete do an exam,b/e./

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH HT

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH HT TH

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH HT TH TT

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

e In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

HHH HHT HTH HTT THH THT TTH TTT

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact

sequence of "heads" and "tails" that you get.

e In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

HHH HHT HTH HTT THH THT TTH TTT

How do we know that we got all the poscibilities? How do we avoid repeats?

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

e Can we observe any patterns between the outcomes in the game with 2 flips
and the outcomes in the game with 3 flips?

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

e Can we observe any patterns between the outcomes in the game with 2 flips
and the outcomes in the game with 3 flips?

HH HT TH TT
N N N N
HHH HHT HTH HTT THH THT TTH TTT
D

Generating coin sequences

e |et's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

e Can we observe any patterns between the outcomes in the game with 2 flips

and the outcomes in the game with 3 flips?
o There is a self-similar tree-like relationship between the possible outcomes of 2
flips and the possible outcomes of 3 flips.
o The branching in the tree comes from deciding whether or nottoaddan Hora T to
the existing sequence.
o Together these branching sequences of decisions define a

Why decision trees?

e We've seen trees in the context of fractals (drawing pretty shapes), but now
we're going to apply meaningful context to these trees.

Why decision trees?

e We've seen trees in the context of fractals (drawing pretty shapes), but now
we're going to apply meaningful context to these trees.

e |n problems where we care about many possible outcomes, decision trees can

help illustrate the recursive backtracking strategy for generating outcomes.
They model the and the

Why decision trees?

e We've seen trees in the context of fractals (drawing pretty shapes), but now
we're going to apply meaningful context to these trees.

e |n problems where we care about many possible outcomes, decision trees can
help illustrate the recursive backtracking strategy for generating outcomes.
They model the options we can choose from and the “decisions” we make
along the way.

e Let's create a visualization of the possible space of outcomes that could result
from N coin flips. Each decision is one flip, and the options for a single flip are
either heads or tails.

Example decision tree for N=2

Flip heads Empty

l sequence
H flipsLeft = 1

Example decision tree for N=2

Flip heads

Empty

'

H

Flip tails

sequence

flipsLeft = 1

Example decision tree for N=2

Flip heads Empty Flip tails

l sequence l
Flip heads .
l H flipsLeft

-3

Il
()

HH flipsLeft

Example decision tree for N=2

Flip heads Empty Flip tails

l sequence l
Flip heads Flip tails .
l H T flipsLeft T

HH HT flipsLeft

I
=

Il
()

Example decision tree for N=2

Flip heads Empty Flip tails

l sequence l
lFip heads H Flip tails 'FlipSLe'F‘t 1 Flip heads T

HH HT flipsLeft TH

Il
()

Example decision tree for N=2

Flip heads Empty Flip tails

l sequence l
lFip heads H Flip tails 'FlipsLe'F‘t 1 Flip heads T Flip tails

HH HT flipsLeft TH TT

Il
()

Example decision tree for N=2

Flip heads

Flip heads H Flip tails

HH HT

Base case: when flipsLeft = 0

Flip tails

Empty Flip tails

sequence

. Flip heads
flipsLeft = r
flipsLeft = TH

=)

TT

Example decision tree for N=2

Flip heads Empty Flip tails

l sequence l
lFip heads H Flip tails 'FlipsLe'F‘t 1 Flip heads T Flip tails

HH HT flipsLeft = © TH TT

Base case: when flipsLeft = 0 We reach the bace case when we reach

the leaves of our decicion tree.

Example decision tree for N=2

Flip heads

Empty
sequence

Flip tails

'

Recursive cases: add ‘H’ or ‘T’ to the
sequence

Flip heads Flip tails .
l H T flipsLeft

HH HT flipsLeft

Flip heads

Flip tails

-

TH

=)

TT

Example decision tree for N=2

Flip heads Empty Flip tails

l sequence l
lFip heads H Flip tails 'FlipsLe'F‘t 1 Flip heads T Flip tails

HH HT flipsLeft = © TH TT

pTAG branching points in our free. e 4

Recursive cases: add ‘H’ or ‘T’ to the
sequence have a recursive call for each option.

Let’s code it!

void generateSequences(int length);

Takeaways: recursive backtracking + decision trees

e Unlike our previous recursion paradigm in which a solution gets built up as
recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

Takeaways: recursive backtracking + decision trees

e Unlike our previous recursion paradigm in which a solution gets built up as
recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

e The of the tree corresponds to the we have to
make. The at each decision point corresponds to the

Takeaways: recursive backtracking + decision trees

e Unlike our previous recursion paradigm in which a solution gets built up as
recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

e The of the tree corresponds to the we have to
make. The at each decision point corresponds to the

e To exhaustively explore the entire search space, we must

. That can be a lot of paths to walk!
o For the previous example, we have to make N decisions, with 2 choices for each decision. This
means 2N total possible outcomes!

Summary

Why do we use recursion?

e FElegance
o Allows us to solve problems with very clean and concise code

e [Efficiency
o Allows us to accomplish better runtimes when solving problems

e Dynamic
o Allows us to solve problems that are hard to solve iteratively

Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e |Initial call to recursive function
produces final solution

What's next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS1068/

Diagnostic

agoﬂm

testing analysis

CuspP

Recursive Backtracking e N

UsP CsP Ccup Cus

List all subsets of This is called a
{A,H, 1} A? decision tree.
SP || UP || US SP || CP || CS

A

e UP || CP || CU Us || CS || CU
H? H? P H u U [P P| |C C H u H E C C
{A} {} ~ D
v X v X 1 3
4/ \ J \ =
I? I? I? I? 4 6
GHI MNO
{A, H} {A} {H} {1}

ﬂ
X©

e}
e
7]
3

ANV VA VA "

(AR} {A HY {A I} | {A} | {H I} | { {1} {}

a|

ollcollzallzn
< r O
b

a
-

