
Welcome to CS106B:
Programming Abstractions!

Where in the world are you right now?
(put your answers the chat)

Who are we?

Kylie Jue

Nick Bowman

–

Today’s
questions

Why take CS106B?

What is an abstraction?

What is CS106B?

Why C++?

What’s next?

Why take CS106B?

"Coding is a technical skill: the
practice of developing a set of
instructions that a computer can
understand and execute.” (Digital Promise 2017)

(Wing, 2006)

“Computer science is an academic
discipline: ‘the study of computers

and algorithmic processes,
including their principles, their

hardware
and software designs, their

applications, and
 their impact
on society’”

"Computational thinking is a
problem solving process: ‘a
way of solving problems,
designing systems, and
understanding human
behavior that draws on
concepts fundamental to
computer science… a
fundamental skill for
everyone, not just
computer scientists’”

Defining key terms

https://digitalpromise.dspacedirect.org/bitstream/handle/20.500.12265/62/Computational%20Thinking%20for%20a%20Computational%20World.pdf?sequence=1&isAllowed=y
https://dl.acm.org/doi/fullHtml/10.1145/1118178.1118215

Defining key terms

● Coding as a technical skill

● Computer science as an academic discipline

● Computational thinking as a problem-solving
process

CS education is more than just
“learning how to code”!

COMMUNICATION
+
CRITICAL
 THINKING

ENGLISH
LANGUAGE

ARTS
WRITING

Phases of language development

1. Discovery that language is a pattern of sounds that takes on meaning and
purpose

2. Participation in everyday social aspects of language that enable an
understanding of encoded cultural values and assumptions

3. Ability to self-reflect on the use of language and to see language as a “tool for
thinking” and communicating thoughts, even when not actively speaking or
interacting with others

(Wells 1981)

https://books.google.com/books?hl=en&lr=&id=HV23MTRFMf8C&oi=fnd&pg=PA240&dq=phases+of+language+development+wells+1981&ots=S689T1F99z&sig=do-b1BSoAxZdWEy7u4pqih3ttxc#v=onepage&q=phases%20of%20language%20development%20wells%201981&f=false

Phases of language development

1. Discovery that language is a pattern of sounds that takes on meaning and
purpose

2. Participation in everyday social aspects of language that enable an
understanding of encoded cultural values and assumptions

3. Ability to self-reflect on the use of language and to see language as a “tool for
thinking” and communicating thoughts, even when not actively speaking or
interacting with others

(Wells 1981) the acquisition of literacy

https://books.google.com/books?hl=en&lr=&id=HV23MTRFMf8C&oi=fnd&pg=PA240&dq=phases+of+language+development+wells+1981&ots=S689T1F99z&sig=do-b1BSoAxZdWEy7u4pqih3ttxc#v=onepage&q=phases%20of%20language%20development%20wells%201981&f=false

What CS106B is not

● A course to teach you how to program from scratch

● A course that will teach you the specifics of the C++ language

What CS106B is

● A logical follow-up course to an introductory computer science class

● A course that will give you practice with computational thinking skills
through basic C++ coding

● A survey of data structures and algorithms to prepare you for future
exploration in computing and to build your understanding of
technology

What is an abstraction?

What is an abstraction?
Breakout rooms!

abstraction
Design that hides the details of how

something works while still allowing the user
to access complex functionality

Definition

Examples of abstraction

What is an abstraction?

● Another example: Programming languages are abstractions through which we
communicate with computers.

● Key idea: Through a simpler interface, users are able to take full advantage of
a complex system without needing to know how it works or how it was made.

● People are important part of defining abstractions and defining the boundary
between usage and implementation (i.e. What should that simpler interface
look like?)

● CS106B focuses on the design and/or use of abstractions in computer science.

Moving across the “abstraction boundary”
Your journey into learning abstractions will be like learning to cook.

Moving across the “abstraction boundary”
Your journey into learning abstractions will be like learning to cook.

You start off by using other people’s recipes – tools that others have created to
make it easy to prepare food and ensure you have sustenance.

Moving across the “abstraction boundary”
Your journey into learning abstractions will be like learning to cook.

You start off by using other people’s recipes – tools that others have created to
make it easy to prepare food and ensure you have sustenance.

Some of these recipes (tools) are better than others, and you learn how to evaluate
them and use them in ways that work best for you as you gain more practice.

Moving across the “abstraction boundary”
Your journey into learning abstractions will be like learning to cook.

You start off by using other people’s recipes – tools that others have created to
make it easy to prepare food and ensure you have sustenance.

Some of these recipes (tools) are better than others, and you learn how to evaluate
them and use them in ways that work best for you as you gain more practice.

The abstraction boundary is the cookbook, with its recipes and cooking techniques.

Moving across the “abstraction boundary”
Your journey into learning abstractions will be like learning to cook.

You start off by using other people’s recipes – tools that others have created to
make it easy to prepare food and ensure you have sustenance.

Some of these recipes (tools) are better than others, and you learn how to evaluate
them and use them in ways that work best for you as you gain more practice.

The abstraction boundary is the cookbook, with its recipes and cooking techniques.

You begin to learn more about the science of cooking – understanding how different
flavors and ingredients work together, what certain cooking techniques do to various
foods, and maybe even how to write some of your own recipes.

abstraction boundary
(what the abstraction looks like)

the user/client side
(how the abstraction is used)

the implementation side
(how the abstraction works)

What is CS106B?
(the nuts and bolts)

abstraction boundary
(what the abstraction looks like)

the user/client side
(how the abstraction is used)

the implementation side
(how the abstraction works)

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

How to use abstractions created by
others (Stanford C++ libraries)

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

How to write abstractions for
others to use

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

How lower-level abstractions are used
to implement higher-level abstractions

abstract data structures
(vectors, maps, etc.)

classes

object-oriented programming

arrays

dynamic memory
management

linked data structures

algorithmic analysistesting recursive problem-solving

Core Tools

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Learning goals

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

● I can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

● I can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

● I can evaluate design tradeoffs when creating data structures and algorithms or utilizing
them to implement technological solutions.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

● I can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

● I can evaluate design tradeoffs when creating data structures and algorithms or utilizing
them to implement technological solutions.

Overarching questions

Overarching questions

1. What is possible with technology and code? What isn’t possible?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

3. What makes for a “good” algorithm or data structure? Why?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

3. What makes for a “good” algorithm or data structure? Why?

Course norms

Course culture + norms
● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

Course culture + norms
● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

Course culture + norms
● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

1. Safe environment
○ Be kind and respectful to one another in breakout rooms, section, and Ed.

Course culture + norms
● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

1. Safe environment
○ Be kind and respectful to one another in breakout rooms, section, and Ed.

2. Active engagement
○ Put your best foot forward in all parts of your learning process: lectures,

assignments, etc.

Course culture + norms
● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

1. Safe environment
○ Be kind and respectful to one another in breakout rooms, section, and Ed.

2. Active engagement
○ Put your best foot forward in all parts of your learning process: lectures,

assignments, etc.
3. Celebration of struggle

Zoom norms

● Avoid video fatigue – it’s okay to turn off your video during lecture.

● But if you can turn on video during breakout rooms and sections, please try to
do so for engagement!

● You will be muted by default. If you have questions during lecture, type them
into the chat or use the “Raise hand” function if you would like to speak.

● Use the chat only for answering questions and asking questions.

(Your section leader will have separate norms for discussion sections.)

Course logistics

Is CS106B the right course for me?

● Where are you in your CS literacy journey?

● Take the CS106B C++ survey. This will give you a sense of the core topics we
expect you to be familiar with from prior programming experience.

● Read the course placement guide on the class website.

● You cannot enroll in both CS106A and CS106B simultaneously, but you are
welcome to shop both to figure out which is a better fit.

https://docs.google.com/forms/u/1/d/e/1FAIpQLSeFQo_H0K4snbZpGKlCE9XNAOeYriWghJIF3NdA5CoRx5Qfkw/viewform
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1208/handouts/course_placement

cs106b.stanford.edu https://us.edstem.org/

http://cs106b.stanford.edu/
https://us.edstem.org/courses/640/

How many units?

Diagram courtesy of Chris Piech

Why should I come to
lecture?

Lecture pedagogy

● Not just us talking at you: active learning exercises

● Quick lecture-to-usage turnaround for concepts covered in class

● We’ll stick around to answer questions afterward!

How will I be
assessed?

What we will ask you to do

What we will ask you to do

Programming assignments

● There will be 6 total
○ A1: C++ Legs
○ A2: Using abstractions (abstract data structures)
○ A3: Recursion
○ A4: Defining the abstraction boundary itself
○ A5: Implementation-side of the abstraction boundary
○ A6: Real-world algorithms

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

✓ Meets requirements, possibly with a few small problems

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

✓+ Satisfies all requirements for the assignment
✓ Meets requirements, possibly with a few small problems
✓- Has problems serious enough to fall short of requirements

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

++ Absolutely fantastic submission (extremely rare)
+ "Perfect" or exceeds our standard expectations
✓+ Satisfies all requirements for the assignment
✓ Meets requirements, possibly with a few small problems
✓- Has problems serious enough to fall short of requirements
- Extremely serious problems, but shows some effort
-- Shows little effort and does not represent passing work

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

++ Absolutely fantastic submission (extremely rare)
+ "Perfect" or exceeds our standard expectations
✓+ Satisfies all requirements for the assignment
✓ Meets requirements, possibly with a few small problems
✓- Has problems serious enough to fall short of requirements
- Extremely serious problems, but shows some effort
-- Shows little effort and does not represent passing work

Why?

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check

○ Must be turned in up to three days after the next assignment is
due.

○ We want to give you opportunities to demonstrate learning!
○ The revisions must include the updated code, tests to catch

previous errors, and must not introduce new errors.
○ Grade capped at a check.

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check
● 24-hour grace period for each assignment

○ Most people will submit by the deadline. (“on-time” bonus)
○ The grace period is a free 24-hour extension that you can use if

you have a particularly difficult week.

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check
● 24-hour grace period for each assignment

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check
● 24-hour grace period for each assignment

All deadlines are at 11:59pm in your local time zone
(including for revisions).

What we will ask you to do

Assessments

● Mid-quarter diagnostic

● Final project

Assessments

● Mid-quarter diagnostic
○ Opportunity to evaluate your understanding of the core,

fundamental topics from the first 3 weeks of the course
○ Designed to take 1.5 hours; completely open notes
○ Available to complete over a 72-hour time span from July 17-19
○ We’ll provide software for you to take the exam on your computer

– once you open the file, you’ll have 3 hours to complete it
○ Post-exam feedback and self-reflection

● Final project

Assessments

● Mid-quarter diagnostic

● Final project
○ Choose a topic area that you’re interested in and that you would

like to improve in
○ Write your own section/exam problem + solution
○ Present the problem to your section leader at the end of the

quarter
○ More guidelines will be released on July 20 after the diagnostic

What we will ask you to do

Section

● Sign up by Tuesday at 5pm PDT at cs198.stanford.edu
○ Sections with remaining spots will open for signups after

Wednesday at 9am PDT

https://cs198.stanford.edu/

Section

● Sign up by Tuesday at 5pm PDT at cs198.stanford.edu

● Sections start this Wednesday!

Section

● Sign up by Tuesday at 5pm PDT at cs198.stanford.edu

● Sections start this Wednesday!

https://cs198.stanford.edu/

How do I get help?

Trip Master
(Head TA)

https://docs.google.com/file/d/1J-ovzIhnMj2hH7NVCsxpRS73kXjJ3mku/preview

Section Leaders

Staff who can work with minors (under 18)

● Kylie and Nick
● Lauren Saue-Fletcher
● Eric Bear
● Jonathan Kula
● Garrick Fernandez
● Kara Eng
● Ricardo Iglesias
● Sidhika Balachandar
● Nicholas Negrete
● Jesse Doan
● Jillian Tang

What the course staff do

● Clarify conceptual material

● Help you develop good debugging practices

● Answer any administrative questions

● Chat about CS and life in general!

What the course staff do

● Clarify conceptual material

● Help you develop good debugging practices

● Answer any administrative questions

● Chat about CS and life in general!

We’re always happy to help you apply CS and the concepts you’ve learned in class to
real-world applications/areas you’re interested in.

What the course staff don’t do

● Write your code for you

● Solve your bugs on assignments

What the course staff don’t do

● Write your code for you

● Solve your bugs on assignments

This is how you learn as a student!

Resources for getting help

● LaIR (general office hours)
○ Open Sunday through Wednesday, 5pm-9pm

■ Check for minors vs. non-minors LaIR hours (alternate by day)
■ Morning LaIR once a week for each group

○ Starts this Tuesday evening
● Your section leader
● Trip’s office hours (no minors)
● Kylie’s + Nick’s office hours
● Ed

Resources for getting help

● LaIR (general office hours)
● Your section leader
● Trip’s office hours (no minors)
● Kylie’s + Nick’s office hours

○ Group office hours
○ Individual office hours - please only sign up for one 15-min slot!

● Ed

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

Conceptual question?

Resources for getting help

● (C)LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

Conceptual question?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

Debugging help + code
questions?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

Administrative
questions?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

General CS + life
questions?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

When in doubt, check the Course Communication guidelines!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1208/getting_help

Resources for getting help

● LaIR
● Your section leader
● Kylie/Nick/Trip office hours
● Ed

When in doubt, check the Course Communication guidelines!

The Summer Academic Resource Center (SARC) also offers
tutoring and academic support separate from our course.

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1208/getting_help
https://summer.stanford.edu/sarc

Honor Code

Stanford’s Honor Code

● All students in the course must abide by the Stanford Honor Code.

● Make sure to read over the Honor Code handout on the CS106B website for
CS-specific expectations.

● Acknowledge any help you get outside course staff directly in your
submissions.

● We run code similarity software on all of your programs.

● Anyone caught violating the Honor Code will automatically fail the course.

https://communitystandards.stanford.edu/policies-and-guidance/honor-code
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1208/handouts/honor_code

Why C++?

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)
○ This means that before running a C++ program, you must first compile it to

machine code.

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)
○ This makes it a great tool for better understanding abstractions!

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)

● If you’re coming from a language like Python, the syntax will take some getting
used to.
○ Like learning the grammar and rules of a new language, typos are

expected. But don’t let this get in the way of working toward literacy!

Demo program!

The structure of a program
#include "console.h"

using namespace std;

// The C++ compiler will look for a function

// called “main”

int main() {

 cout << "Hello, world!" << endl;

 return 0; // must return an int to indicate

 // successful program completion

}

import sys

This function does not need to be called “main”

def main():

 print('Hello, world!')

if __name__ == '__main__':

 # Any function that gets placed here will get

 # called when you run the program with

 # `python3 helloworld.py`

 main()

C++ Python

What’s next?

Applications of abstractions

Announcements

● Complete the C++ survey.

● Fill out your section time preferences by Tuesday at 5pm PDT.
○ Make sure to check what time you’ve been assigned on Wednesday

morning.

● Finish Assignment 0 by Wednesday.
○ If you’re running into issues with Qt Creator, come to the Qt Installation

Help Session tomorrow (Tuesday) at 7pm PDT.

● Assignment 1 will be released tomorrow!

https://docs.google.com/forms/u/1/d/e/1FAIpQLSeFQo_H0K4snbZpGKlCE9XNAOeYriWghJIF3NdA5CoRx5Qfkw/viewform
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1208/assignments/assign0/

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!
Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

C++ basics

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!
Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

C++ basics

We’re excited to move
across the abstraction

boundary together!

