
YEAH
Assignment
1

YEAH
Assignment
1
Getting your C++
Legs
Getting your C++
Legs

Welcome to YEAHWelcome to YEAH

 Your Early Assignment Help!
 Conceived many moons ago to give students a boost when starting

assignments early

 Have also proved to be helpful for students starting later!

 We’ll review the assignment, and I’ll give helpful hints / tips – please
ask questions!

 If you can please come to the live session! I get lonely :(

 Your Early Assignment Help!
 Conceived many moons ago to give students a boost when starting

assignments early

 Have also proved to be helpful for students starting later!

 We’ll review the assignment, and I’ll give helpful hints / tips – please
ask questions!

 If you can please come to the live session! I get lonely :(

Who am I?Who am I?

 Senior, CS major (Systems track), Music minor

 I like asking the question “why does this work?”

 Head TA’d 106B this past summer while Nick was co-
lecturing!

 Not SL’ing this quarter, but I’m working with your
SL’s to keep things running smoothly

 I’m the Music Director of the a cappella group Fleet
Street! Check us out :)

Welcome to YEAHWelcome to YEAH

 What I can do:
 Clarify funkiness (or try my best to do so) on the handout
 Give important insight / highlight common pitfalls on the assignment
 Memes (of variable dankness)

 What I can’t do:
 Answer questions like “How exactly do I implement this?”
 Day trading

 What I can do:
 Clarify funkiness (or try my best to do so) on the handout
 Give important insight / highlight common pitfalls on the assignment
 Memes (of variable dankness)

 What I can’t do:
 Answer questions like “How exactly do I implement this?”
 Day trading

Today’s AgendaToday’s Agenda

1. Assignment logistics

2. Part I: Perfect Numbers

3. Part II: Soundex

1. Assignment logistics

2. Part I: Perfect Numbers

3. Part II: Soundex

Assignment 1 LogisticsAssignment 1 Logistics

 Due Friday, Sept 25th, 11:59PM PDT
 This is in 5 days from now! Better get cracking!
 The grace period for this assignment is 48 hours

 You must complete this assignment individually. Please read
more about what kinds of collaboration are and are not permitted
on the course website.

 Due Friday, Sept 25th, 11:59PM PDT
 This is in 5 days from now! Better get cracking!
 The grace period for this assignment is 48 hours

 You must complete this assignment individually. Please read
more about what kinds of collaboration are and are not permitted
on the course website.

Any Questions About Logistics?Any Questions About Logistics?

Part 1: Perfect NumbersPart 1: Perfect Numbers

 A warmup program to get your cpp bearings. You’ll write an
efficient algorithm that finds perfect numbers!
 A perfect number is a number whose factors add to the number!

 6 = 1 + 2 + 3; 28 = 1 + 2 + 4 + 7 + 14

 2 fundamental pieces, coding and short answer.
 Designed to complement each other and help your understanding!

 A warmup program to get your cpp bearings. You’ll write an
efficient algorithm that finds perfect numbers!
 A perfect number is a number whose factors add to the number!

 6 = 1 + 2 + 3; 28 = 1 + 2 + 4 + 7 + 14

 2 fundamental pieces, coding and short answer.
 Designed to complement each other and help your understanding!

Euclid discovered a pretty cool
relationship about perfect
numbers… we’ll come back to
this.

Part 1: Perfect NumbersPart 1: Perfect Numbers
 The first thing that you’ll do in this assignment is examine a pre-written

algorithm that finds perfect numbers.

 The first thing that you’ll do in this assignment is examine a pre-written
algorithm that finds perfect numbers.

Part 1: Perfect NumbersPart 1: Perfect Numbers

 isPerfect() calls a routine called divisorSum(). This approach is
called an Exhaustive Algorithm. These algorithms attempt to
find solutions by doing all computations without optimizations.

 isPerfect() calls a routine called divisorSum(). This approach is
called an Exhaustive Algorithm. These algorithms attempt to
find solutions by doing all computations without optimizations.

Part 1: Perfect NumbersPart 1: Perfect Numbers

 Exhaustive algorithms get the job done, but they’re not the
fastest. We can do better!

 But first, it’s time for…

 Exhaustive algorithms get the job done, but they’re not the
fastest. We can do better!

 But first, it’s time for…

Kanye Student-Test’s Testing
Overview!

Kanye Student-Test’s Testing
Overview!

Student-Test, CS106B
alum and unit-testing
pro

break my
computer

Running Tests in CS106BRunning Tests in CS106B

 An important part of CS106B is testing, the ability to write small pieces of
functionality that you can test.

 There are 4 functions you’ll be frequently using this quarter, TIME_OPERATION,
EXPECT, EXPECT_EQUAL, and EXPECT_ERROR.
 You will create STUDENT_TEST’s and use TIME_OPERATION, EXPECT, EXPECT_EQUAL,

and EXPET_ERROR to verify the correctness of your functions!

 TIME_OPERATION (inputsize, operation) function call times how long it takes to
perform function OPERATION on INPUTSIZE elements, and reports these numbers
to the console.

 Check out the use of the EXPECT functions use on the next slide!

 An important part of CS106B is testing, the ability to write small pieces of
functionality that you can test.

 There are 4 functions you’ll be frequently using this quarter, TIME_OPERATION,
EXPECT, EXPECT_EQUAL, and EXPECT_ERROR.
 You will create STUDENT_TEST’s and use TIME_OPERATION, EXPECT, EXPECT_EQUAL,

and EXPET_ERROR to verify the correctness of your functions!

 TIME_OPERATION (inputsize, operation) function call times how long it takes to
perform function OPERATION on INPUTSIZE elements, and reports these numbers
to the console.

 Check out the use of the EXPECT functions use on the next slide!

Running Tests in CS106BRunning Tests in CS106B

Questions about testing?Questions about testing?

Back to our algorithm!Back to our algorithm!

Can we do better?Can we do better?

 After you write some tests for the existing code, your next step
will be to improve the perfect number-finding algorithm!
 In its current state, the helper function that computes the sum of all

divisors of a number loops through all values between 1 and n - 1.

 After you write some tests for the existing code, your next step
will be to improve the perfect number-finding algorithm!
 In its current state, the helper function that computes the sum of all

divisors of a number loops through all values between 1 and n - 1.

Can we do better?Can we do better?

 It turns out, we only have to loop through numbers 1 -> sqrt(n) to
get all divisors of n!
 Ex. For the number 6, who has perfect factors 1, 2, and 3, we only

need to consider 1 and 2 (or 1 -> sqrt(6)); we can get the
complementary factor via (n / divisor) -> 3 = 6 / 2.

 Ex. 28 -> [1], [2 AND 28 / 2], [4 AND 28 / 4]

 Suddenly, our work has gone from (n) computations to (sqrt(n))
computations. Nice job!

 It turns out, we only have to loop through numbers 1 -> sqrt(n) to
get all divisors of n!
 Ex. For the number 6, who has perfect factors 1, 2, and 3, we only

need to consider 1 and 2 (or 1 -> sqrt(6)); we can get the
complementary factor via (n / divisor) -> 3 = 6 / 2.

 Ex. 28 -> [1], [2 AND 28 / 2], [4 AND 28 / 4]

 Suddenly, our work has gone from (n) computations to (sqrt(n))
computations. Nice job!

Speed Racer
giving you a
thumbs-up!

SmarterSumSmarterSum

 You’re going to write this into a program called smarterSum() that
has the same functionality as divisorSum, but only loops through
sqrt(n) numbers!

 Some tips/tricks
 There are a number of edge cases to consider now that you’re not

examining all numbers. Think about how you might handle negative
values on n, 0, 1, or square roots! This is the kind of thinking that
you should always have when testing your code!

 You’re going to write this into a program called smarterSum() that
has the same functionality as divisorSum, but only loops through
sqrt(n) numbers!

 Some tips/tricks
 There are a number of edge cases to consider now that you’re not

examining all numbers. Think about how you might handle negative
values on n, 0, 1, or square roots! This is the kind of thinking that
you should always have when testing your code!

Questions about smarterSum?Questions about smarterSum?

Mersenne PrimesMersenne Primes

 A Mersenne Prime is a special prime number that is one less
than a power of two.
 31 = 2^5 - 1.

 Euclid discovered a cool property of these numbers:
 If 2^k – 1 is prime, then 2^(k - 1) * (2^k - 1) is a perfect number!

 Can we make our perfect number algorithm even better?

 A Mersenne Prime is a special prime number that is one less
than a power of two.
 31 = 2^5 - 1.

 Euclid discovered a cool property of these numbers:
 If 2^k – 1 is prime, then 2^(k - 1) * (2^k - 1) is a perfect number!

 Can we make our perfect number algorithm even better?

findNthPerfectEuclidfindNthPerfectEuclid

 You’re going to use Euclid’s discovery to write a routine that finds
the nth perfect number. More specifically, you’ll be implementing
the function

 long findNthPerfectEuclid(long n)

 that returns a long signifying the perfect number of order n.

 You’re going to use Euclid’s discovery to write a routine that finds
the nth perfect number. More specifically, you’ll be implementing
the function

 long findNthPerfectEuclid(long n)

 that returns a long signifying the perfect number of order n.

findNthPerfectEuclidfindNthPerfectEuclid

 Here’s how we’d like you to approach this problem:

1. Start by setting a variable k = 1

2. Calculate m = 2^k – 1 (use cpp library pow() function!)

3. Determine whether m is prime or composite (write an isPrime function that
loops through possible divisors!)

4. If m is prime, (it’s a Mersenne Prime!!) calculate 2^(k - 1) * (2^k - 1). This is
the associated perfect number!

5. Increment k and repeat until you’ve found the nth perfect number!

(I’ll wait here for a second :))

 Here’s how we’d like you to approach this problem:

1. Start by setting a variable k = 1

2. Calculate m = 2^k – 1 (use cpp library pow() function!)

3. Determine whether m is prime or composite (write an isPrime function that
loops through possible divisors!)

4. If m is prime, (it’s a Mersenne Prime!!) calculate 2^(k - 1) * (2^k - 1). This is
the associated perfect number!

5. Increment k and repeat until you’ve found the nth perfect number!

(I’ll wait here for a second :))

findNthPerfectEuclidfindNthPerfectEuclid

 A few things you should know:
 We’re using long instead of int here because these numbers can get

really big!
 If you’re on a windows machine, you won’t be able to find perfect

numbers greater than ~6, but on mac you can find a few more!
 Want to know why? Take CS107, or look up 32bit vs 64bit architectures!

 A few things you should know:
 We’re using long instead of int here because these numbers can get

really big!
 If you’re on a windows machine, you won’t be able to find perfect

numbers greater than ~6, but on mac you can find a few more!
 Want to know why? Take CS107, or look up 32bit vs 64bit architectures!

Questions about
findNthPerfectEuclid?

Questions about
findNthPerfectEuclid?

source,
xkcd

Redacted 2 –
syllable word

That’s Part I!That’s Part I!

 Congrats! You made it past part I. On to the last one! Congrats! You made it past part I. On to the last one!

source, google images

Part II, Soundex SearchPart II, Soundex Search

 In this final part, you’ll be writing an algorithm that takes a last
name and turns it into a soundex code, which is a 4-digit
pseudo-phonetic representation of a last name.
 I say pseudo-phonetic because the soundex algorithm we’re going to

use is pretty crappy, and it doesn’t account for most pronounciations.
 That being said, the US census uses soundex codes! Wonder what

that says about our language tolerance :o

 In this final part, you’ll be writing an algorithm that takes a last
name and turns it into a soundex code, which is a 4-digit
pseudo-phonetic representation of a last name.
 I say pseudo-phonetic because the soundex algorithm we’re going to

use is pretty crappy, and it doesn’t account for most pronounciations.
 That being said, the US census uses soundex codes! Wonder what

that says about our language tolerance :o

Soundex()Soundex()

 Here are some examples of soundex conversions:
 Zelenski -> Z452
 Lee -> L000 (see what I mean?)

 Here are some examples of soundex conversions:
 Zelenski -> Z452
 Lee -> L000 (see what I mean?)

Soundex()Soundex()
 The good news is, the string soundex (string s)

routine is actually pretty straightforward. Here are the
steps!

1. Discard all non-letters from the name. The isalpha()
function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025 would
become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

 The good news is, the string soundex (string s)
routine is actually pretty straightforward. Here are the
steps!

1. Discard all non-letters from the name. The isalpha()
function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025 would
become 2025)

5. Replace the first number of the encoding with the
saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code or
padding zeroes at the end.

Soundex()Soundex()

 Let’s see an example with Zelenski! Let’s see an example with Zelenski!

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Zelenski Z

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Zelenski Z

20405220

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Zelenski Z

20405220

2040520

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Zelenski Z

20405220

2040520

Z040520

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Zelenski Z

20405220

2040520

Z452

Z040520

Soundex()Soundex()
 The good news is, the soundex routine is actually

pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

 The good news is, the soundex routine is actually
pretty straightforward. Here are the steps!

1. Discard all non-letters from the name. The
isalpha() function will help with this!

2. Save the first letter of the name, and convert to
uppercase if necessary.

3. Encode all letters using the depicted table.

4. Coalesce adjacent duplicate numbers (222025
would become 2025)

5. Replace the first number of the encoding with
the saved first letter of the name.

6. Remove ALL zeroes from the code.

7. Format to length 4 by either truncating the code
or padding zeroes at the end.

Zelenski

Zelenski Z

20405220

2040520

Z452

Z040520

Z452
Done!

Soundex()Soundex()

 You’ll implement this routine in the string soundex(string s)
routine. You’ll take a surname as a string and return the
associated soundex code!
 To do this, please decompose! The aforementioned steps can each

be their own functions, and that way you’ll be able to write tests for
each helper function you write!

 If you are able to test your helper functions, it will be much easier to
pinpoint potential bugs in your program!

 You’ll implement this routine in the string soundex(string s)
routine. You’ll take a surname as a string and return the
associated soundex code!
 To do this, please decompose! The aforementioned steps can each

be their own functions, and that way you’ll be able to write tests for
each helper function you write!

 If you are able to test your helper functions, it will be much easier to
pinpoint potential bugs in your program!

Soundex()Soundex()

 Here are some tips for Soundex()
 You’ll be doing lots of work with strings and chars here. Know how to index into a

string (like str[i]), but be wary that strings and chars are different types!
 Strings use “double quotes” and chars use ‘s’ingle quotes.

 In case you need to convert between the two, strlib.h includes conversion functions!

 When converting chars to soundex numbers, ensure that your code is case
insensitive!

 If you ever need to convert a char to upper case, the int toupper(int c) function in
<cctype> will return the uppercase version of the char you pass in.

 wait… why does int toupper(int c) deal with integers then….

 Here are some tips for Soundex()
 You’ll be doing lots of work with strings and chars here. Know how to index into a

string (like str[i]), but be wary that strings and chars are different types!
 Strings use “double quotes” and chars use ‘s’ingle quotes.

 In case you need to convert between the two, strlib.h includes conversion functions!

 When converting chars to soundex numbers, ensure that your code is case
insensitive!

 If you ever need to convert a char to upper case, the int toupper(int c) function in
<cctype> will return the uppercase version of the char you pass in.

 wait… why does int toupper(int c) deal with integers then….

It’s time for…It’s time for…

Charole Baskin’s brief foray into char
representation via the ASCII set!

Charole Baskin’s brief foray into char
representation via the ASCII set!

INTS DOUBLES
-Charole Baskin, 106B alum
and mariticide suspect

How do we represent characters?How do we represent characters?

 Let’s face it, there are a lot of unique chars out there. When you
couple that with the existence of fonts*, you get a data
representation nightmare – how do you represent chars?

 The computing world decided to get together to create a
standard number representation for popular chars (128 of
them!). Each char would correspond to an integer in a table
called the ASCII set.

 For example, ‘A’ -> 65, and ‘a’ -> 97.

 Let’s face it, there are a lot of unique chars out there. When you
couple that with the existence of fonts*, you get a data
representation nightmare – how do you represent chars?

 The computing world decided to get together to create a
standard number representation for popular chars (128 of
them!). Each char would correspond to an integer in a table
called the ASCII set.

 For example, ‘A’ -> 65, and ‘a’ -> 97.

What does this code print?What does this code print?

How do we represent characters?How do we represent characters?

 You need to be careful that you’re not working directly with
integers when you work with characters!
 If a function returns an int, be sure you’re storing the data as a

character so that it can be read properly!

 You need to be careful that you’re not working directly with
integers when you work with characters!
 If a function returns an int, be sure you’re storing the data as a

character so that it can be read properly!

Soundex()Soundex()

 Questions about soundex?

 Please remember to decompose the steps on this one :)

 Questions about soundex?

 Please remember to decompose the steps on this one :)

source, xkcd,
depicting me in a
few years – I’m
terrible with names

Soundex SearchSoundex Search

 Now it’s time to put your soundex function to the test! You will write the
function void soundexSearch(string filePath), that allows the user to
find the soundex code for a given name, along with other names in the
database represented by the filename filePath with the same soundex
code.

 Your interaction with the user should match this exactly:

 Now it’s time to put your soundex function to the test! You will write the
function void soundexSearch(string filePath), that allows the user to
find the soundex code for a given name, along with other names in the
database represented by the filename filePath with the same soundex
code.

 Your interaction with the user should match this exactly:
This line is done
for you 

Soundex SearchSoundex Search

 You’ve already been provided with the code that reads the
provided file into a vector. If you’re not super familiar, a vector is
like a Java ArrayList or a python List: we use it to store things!
 Here, the vector lines stores all names from the file!

 You’ve already been provided with the code that reads the
provided file into a vector. If you’re not super familiar, a vector is
like a Java ArrayList or a python List: we use it to store things!
 Here, the vector lines stores all names from the file!

 You’ll need to repeatedly prompt the user for a name (think while loop!)
 If the user enters empty string, (return) break out of the loop!

 Once you get a string, compute and print its soundex code!

 Then, loop through the vector of strings, compute the soundex for each line,
and store any whose soundex match yours into a new vector, which you will
print after you’ve found all matches!

 You’ll need to repeatedly prompt the user for a name (think while loop!)
 If the user enters empty string, (return) break out of the loop!

 Once you get a string, compute and print its soundex code!

 Then, loop through the vector of strings, compute the soundex for each line,
and store any whose soundex match yours into a new vector, which you will
print after you’ve found all matches!

Soundex SearchSoundex Search

Vector SemanticsVector Semantics

Soundex SearchSoundex Search

 A few tips / tricks:
 Use the getline() function from “simpio.h” to get user input!
 You need to sort the names in the vector alphabetically. No need to

fuss; before you print the vector, simply call vector_name.sort()
(sorts in place)

 You can cout vectors just like strings, and they’ll present themselves
like you see in the example!

 Give “Stanford string cpp” a google and take a foray through the
Stanford cpp library for strings. There are some really helpful
functions out there!

 A few tips / tricks:
 Use the getline() function from “simpio.h” to get user input!
 You need to sort the names in the vector alphabetically. No need to

fuss; before you print the vector, simply call vector_name.sort()
(sorts in place)

 You can cout vectors just like strings, and they’ll present themselves
like you see in the example!

 Give “Stanford string cpp” a google and take a foray through the
Stanford cpp library for strings. There are some really helpful
functions out there!

Questions About Soundex Search?Questions About Soundex Search?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

