CIRSS
YOU THEREAL %T

11 .59PM

Questions about logistics?

Warmups

tforward
i// to com plete

Warmup 0: Patch the Debugger!

 This first part is simply a test to MM Value Type
verify that you're able to visualize > [statics] | |
ADT's in the debugger! v q <5 items> Queue<|nt> &

front int

* You should be able to run the int
warmup program in the debugger int
and see a view in the top right int
like this when looking at ADT's. If . int
not, check out the website for <0 items> Stack<int>

details on how to patch this! 28672 int

* Thanks to SL Jeremy Barenholtz
for the fix!

Warmup 1: Observing ADT’s in the
Debugger

 For the first part, you’ll void reverse(Queue<int>& q) {
examine the following Stack<int> s;
function: wh'i'Le. (!q.isEmpty()) {

» This function is already int val = q.dequeue();
implemented for you, and s.push(val);
you’ll be using the debugger }
to step through it! while (!s.isEmpty()) {

» To view the internals, put a int val = s.pop();
breakpoint on the first line of q-enqueue(val);

the function and run the
program in the debugger!

Warmup 1: Observing ADT’s in the

Debugger
* |In the top right corner of Name Value Tyoe
QT, you’ll see the names of the > [statics] | |
variables in your function! You e <5 items> ﬁ;‘e”e“'"“’&
can expand them via the it
arrows on the left! int
int
 As you can see, you can peek int
into the queue at runtime! As <0 items> Stack<int>

28672 int

you step thru the debugger,
you can watch these values
change in real time!

Warmup 2: Debugging an ADT question

 For this next part, you’re
going to use your new
debugging skills to debug this
function:

 Step through the function for a
few iterations and determine
where things go wrong!

void duplicateNegatives(Queue<int>& q) {

for (int i = 0; i < g.size(); i++) {

int cur = g.dequeue();
g.enqueue(cur) ;

if (cur < 0) {
g.enqueue(cur);

// double up on negative numbers

Warmup 3: Debugging an Error

 For the final warmup, you’ll
be debugging the following
function:

* This function raises an error,
meaning during runtime, it
encounters a problem and
terminates!

e The problem is, you’re not
allowed to modify a data
structure while you loop thru
it with a for each loop.

void removeMatchPairs(Map<string, string>& map) {
for (string key: map) {
if (map[key] == key) {
map.remove (key) ;

Warmup 3: Debugging an Error

* You’ll need to step thru this
function in the debugger to

determine exactly where it void removeMatchPairs(Map<string, string>& map) {
y .
throws the error! for (string key: map) {
_ _ if (map[key] == key) {
* Pro tip: remember this error map. remove (key) ;

for later - if you’re looping
thru some data, don’t modify
it. If the code doesn’t crash,
it’ll usually give you strange
and incorrect behavior.

Questions about the warmups?

Part |I: Maze

« Welcome to the first coding
part of the assignment!

 You’ll be working with a mazes
like the one to your right -
these mazes will start in the
top left and have exits in the
bottom right.

Part |I: Maze

e Let’s talk a little more about
these mazes:

 The maze itself is actually
represented as a Grid<bool> in
your program, where a cell
marked true is an open corridor
and a cell marked false is a wall.

* mazeGrid[row][col] returns a
Boolean that indicates whether
{row, col} are the coordinates of
a wall or a corridor!

Part |I: Maze

* Where do these Grid<bool>
come from?

« Great question, rhetorical
viewer. Mazes are provided to
you in the starter code as text
files.

» We’ve provided you the function

void readMazeFile(string filename, Grid<bool>& maze) {

that reads in a text file like the
one on the right and converts it
into a Grid<bool>. We use ‘@’ to
represent walls and -’ to
represent corridors.

Part |I: Maze
GridLocations

e There’s a new abstraction

you’ll need to become
comfortable with using!

A GridLocation represents a
pair of coordinates. You can
think of it like

{ row, col }

// You can create a GridlLocation by separately setting its row and col fields
GridLocation chosen;
chosen.row = 3; // separate assignment to row

chosen.col = 4; // then col

// Or you can create a GridlLocation by setting its row and col during initialization
GridLocation exit = { maze.numRows()-1, maze.numCols()-1 }; // last row, last col

// You can use GridlLocations to index into a Grid (maze is a Grid)

if (maze[chosen]) // equivalent to maze[3][4]

// You can directly compare two GridlLocations

if (chosen == exit)

// You can also access and use a GridlLocation's row,col separately

if (chosen.row == 0 && chosen.col == 0)

Questions about the Grid<bool> or
GridLocations?

// You can create a GridlLocation by separately setting its row and col fields
GridLocation chosen;

chosen.row = 3; // separate assignment to row

chosen.col = 4; // then col

// Or you can create a GridLocation by setting its row and col during initialization
GridLocation exit = { maze.numRows()-1, maze.numCols()-1 }; // last row, last col

// You can use GridlLocations to index into a Grid (maze is a Grid)
if (maze[chosenl) // equivalent to maze[3][4]

// You can directly compare two GridlLocations
if (chosen == exit)

// You can also access and use a GridlLocation's row,col separately
if (chosen.row == 0 && chosen.col == 0)

Part |I: Maze

 How can we store a path in
our maze?

rih

Part |I: Maze

 How can we store a path in
our maze?

« We can use a
Stack<GridLocation>

* In this case, the top of the stack
would represent the last visited
location (the exit in a complete
path!)

* The bottom would be the start of
the path, (typically the top left
corner).

rih

Part |I: Maze

* For some of the mazes we
provide for you, we also give
you the maze solutions stored
in a text file!

» Take a second to verify that
the locations below represent
a valid path out of the maze!

* The path reads left(start) to
right(end)

{roco, rocl, r0c2, roc3, roc4, r0ch, roc6, ric6, r2c6, r3c6, rdcét}

Part |I: Maze

« We’ve also written a function
for you that turns a solution
.txt file into a
Stack<GridLocation> called

void readSolutionFile(string filename, Stack<GridLocation>& soln) {

{roco, rocl, r0c2, roc3, roc4, r0ch, roc6, ric6, r2c6, r3c6, rdcét}

Questions about mazes, text files or data
structures?

{roco, rocl, r0c2, roc3, roc4, r0ch, roc6, ric6, r2c6, r3c6, rdcét}

/
Part I: Maze
generateValidMoves()

. . ._..J:::.I.egin, yOU’re gOing to Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
- implement the following
~ function:

* This function takes in a maze
as well as a current location in
that maze.

* You are tasked with returning
a set of valid neighbors

* These are locations one step
away in the (NSEW) directions
that are non-walls and in bounds!

/
Part I: Maze
generateValidMoves()

. . ._..J:::.I.egin, yOU’re gOing to Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
- implement the following
~ function:

* This function takes in a maze
as well as a current location in
that maze.

* You are tasked with returning
a set of valid neighbors

* These are locations one step
away in the (NSEW) directions
that are non-walls and in bounds!

Part |I: Maze
generateValldMoves()

‘ " /*/” eg]n you S gO]ng to Set<GridlLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
- implement the following
__:;;-- “function:

~« This function takes in a maze
as well as a current location in
that maze.

* You are tasked with returning
a set of valid neighbors

* These are locations one step
away in the (NSEW) directions
that are non-walls and in bounds!

Part |I: Maze
generateValidMoves()

._'.I.I.Case, you,d return d Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridLocation cur)
- Set<GridLocation> that
tained 2 things: the

- coordinates of the above
- location and the coordinates
of the below location.

Part I: Maze
generateValidMoves()

.-’j‘.a" :// ; " , | .
‘ ..--"Z.-OUt generateValldMOVeS(), Set<GridLocation> generateValidMoves(Grid<bool>& maze, GridlLocation cur)

You can use the Grid’s inbounds()

~ function to tell whether a
coordinate pair is within the
bounds of a grid.

Be sure to add good tests for this
part - we specifically leave edge
cases out of the tests we provide
you.

* You need to generalize your
routine for validating a neighbor.
It is poor style to repeat the
process of validation 4 times -
once for each valid direction.

» Think about how you might use a
loop to fix this!

=

Questions about generateValidMoves()? -

Part |: Maze
checkSolution()

 Let’s say now that you
generated a Grid<bool> and a
Stack<GridLocation>
re[)resenting a maze and a
solution, respectively, and
you wanted to verify that it
actually was the solution to a
maze.

{r@co, rocl, ro@c2, roc3, roc4, roch, rbc6, ric6, r2cb, r3c6, ricé}

« How would you do it?

Part I: Maze

checkSolution() -

Part |: Maze
checkSolution()

 Here’s the criteria for a valid
solution:

A path represents a valid solution through the maze if it meets the following criteria:

The path must start at the entry (upper left corner) of the maze. {0,0}

The path must end at the exit (lower right corner) of the maze. { maze.numRows() - 1,
Each location in the path is within the maze bounds. maze.numcols() -1 J

Each location in the path is an open corridor (not wall).
Each location is one cardinal step (N,S,E,W) from the next in path.

The path contains no loops, i.e. a location appears at most once in the path.

Part |: Maze
checkSolution()

If you identify that any of these things is incorrect, you can raise an error
like this:

error("Here is my message about what has gone wrong");

A path represents a valid solution through the maze if it meets the following criteria:

The path must start at the entry (upper left corner) of the maze. { 0,0}

The path must end at the exit (lower right corner) of the maze. { maze.numRows() - 1,
Each location in the path is within the maze bounds. maze.numeols() - 1 }

Each location in the path is an open corridor (not wall).
Each location is one cardinal step (N,S,E,W) from the next in path.

The path contains no loops, i.e. a location appears at most once in the path.

Part |: Maze
checkSolution()

* You’ll be implementing the following function:
void checkSolution(Grid<bool>& maze, Stack<GridLocation> path)

that verifies that PATH is contains the correct sequence of locations that
navigate through MAZE without doing anything fishy.

» The function raises an ERROR if PATH is invalid, and it does nothing if the
path is valid.

 You can test this functionality with the EXPECT_ERROR() and
EXPECT_NO_ERROR() functions in the simple test framework!

Part |I: Maze

checkSolution()
void checkSolution(Grid<bool>& maze, Stack<GridLocation> path)

» A few more points about checkSolution:

* One of the things you’re going to have to do is examine the elements in PATH - but
you can’t use a for loop or a for-each loop to examine the internals of a Stack: what
can you do instead?

» Be sure that you test A LOT for this function - because there are so many cases,
there’s a lot of functionality and edge cases that you’re responsible for here!

» To verify that each location is a caridnal step away from the next, think about how
you can reuse your generateValidMoves() function to help.

* |If you need to keep track of “visited” items, Sets are great!

Questions about checkSolution()?

"Hey can | copy your homework?"

"Yeah just make sure to change it a
little"

"Alright”

C|'" : J_xJ_J 114
£squeakqgue]

If you can’t
checkSolution(), you might
run into this problem!
(please abide by the honor
code!)

Part |I: Maze
solveMaze()

* Now it’s time for the big code in this part: solveMaze()!

Stack<GridLocation> solveMaze(Grid<bool>& maze)

» Up to this point, you’ve been validating pre-generated maze solutions
from text files. It’s now time to generate your own solutions to a given
maze!

» Given a Grid<bool> MAZE, it’s your job to return a Stack<GridLocation>
that contains the valid steps to escape it!

Part |I: Maze
solveMaze

Stack<GridlLocation> solveMaze(Grid<bool>& maze)

» To programmatically generate a solution to a given maze, you’ll need to
use a Breadth-First Search (BFS) algorithm.

* This is the first complex algorithm you'll need to write up in this class!
Luckily, it's not too bad, and we'll go over it together.

° Here’s the algOrith m: 1. Create a queue of paths. A path is a stack of grid locations.

2. Create a length-one path containing just the entry location. Enqueue that path.
o For simplicity, assume entry is always the upper-left corner and exit in the lower-right.
3. While there are still more paths to explore:
o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.
= A location has up to four neighbors, one in each of the four cardinal directions. A
neighbor location is viable if it is within the maze bounds, the cell is an open

corridor (not a wall), and it has not yet been visited.

Part |I: Maze
solveMaze()

Part |I: Maze
solveMaze()

Part |I: Maze
solveMaze()

all example:

Part |I: Maze
solveMaze()

L example:

B 1. Create a queue of paths. A path is a stack of grid locations.

PATHS

Part |I: Maze
solveMaze()

Part |I: Maze
solveMaze()

L example:

.Create a length-one path containing just the entry location. Enqueue that path.

PATH

PATHS

Part |I: Maze
solveMaze()

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:
o Dequeue path from queue.

CURRENT_PATH

Part |I: Maze
solveMaze()

all example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

Part |I: Maze
solveMaze()

rysmall example:

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

thru a very small example:

CURRENT_PATH

10,0}
CURRENT_PATH_EXIT

MAZE PATHS

Part |I: Maze
solveMaze()

thru a very small example:

CURRENT_PATH

{0,0} = = {1,2}

CURRENT_PATH_EXIT

MAZE PATHS

Part |I: Maze
solveMaze()

thru a very small example:

CURRENT_PATH

10,0}
CURRENT_PATH_EX.T

MAZE PATHS

Part |I: Maze
solveMaze()

Fu a Very Small example: 3. While there are still more paths to explore

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

/,4;—5 K hru a Very Small example 3. While there are still more paths to explore:

“ /// o Dequeue path from queue.

o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it

CURRENT_PATH

VALID_NEIGHBORS

MAZE PATHS

Part |I: Maze
solveMaze()

//,4;—5? ’ hru a Very Small example 3. While there are still more paths to explore:

/// o Dequeue path from queue.

o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it

CURRENT_PATH

{{0, 0} } VALID_NEIGHBORS
CURRENT_PATH_CPY

MAZE PATHS

Part |I: Maze
solveMaze()

th ry a Very sm all exam p le: 3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding

neighbor and enqueue it.

CURRENT_PATH

{1{0, 03, {1,033 VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:
o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.

CURRENT_PATH -

{1{0, 03, {1,033 VALID_NEIGHBORS
CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

Repeat!

VALID_NEIGHBORS
CURRENT_PATH_CPY

CURRENT_PATH

Part |I: Maze
solveMaze()

all example:

3. While there are still more paths to explore:

o Dequeue path from queue.

Part I: Maze
solveMaze()

____;;_;‘Fﬁ:all example:
3. While there are still more paths to explore:
o Dequeue path from queue.

Part I: Maze
solveMaze()

____;;_;‘Fﬁ:all example:
3. While there are still more paths to explore:
o Dequeue path from queue.

CURRENT_PATH

Part |I: Maze
solveMaze()

all example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

Part |I: Maze
solveMaze()

rysmall example:

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

thru a very small example:

1,0}
CURRENT_PATH_EXIT

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

thru a very small example:

TR}
{1,0} aw .o 11,2}
CURRENT _PATH_EXIT

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

rysmall example:

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

CURRENT_PATH

MAZE PATHS

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.

CURRENT_PATH

VALID_NEIGHBORS

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.

CURRENT_PATH

{{0, 03, {1,033 VALID_NEIGHBORS
CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

“ WalK h ru a Very Small example: 3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding

neighbor and enqueue it.

CURRENT_PATH

{{0, 03, {1,033 VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

Part |I: Maze
solveMaze()

“ WalK h ru a Very Small example: 3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding

neighbor and enqueue it.

CURRENT_PATH

{{0, 03, {1,03, {1,1}} VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.

CURRENT_PATH

{{0, 03, {1,03, {1,1}} VALID_NEIGHBORS
CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

Repeat!

VALID_NEIGHBORS

CURRENT_PATH

CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

all example:

3. While there are still more paths to explore:

o Dequeue path from queue.

Part |I: Maze
solveMaze()

all example:

3. While there are still more paths to explore:

o Dequeue path from queue.

\'_

CURRENT_PATH

Part |I: Maze
solveMaze()

all example:

3. While there are still more paths to explore:

o Dequeue path from queue.

CURRENT_PATH

Part |I: Maz
solveMaze()

CURRENT_PATH

Part |I: Maze
solveMaze()

Part |I: Maze
solveMaze()

CURRENT_PATH

Part |I: Maze
solveMaze()

CURRENT_PATH

VALID_NEIGHBORS

PATHS

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:

o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.

CURRENT_PATH -

{{0, 03, {1,0}, {1,1}} VALID_NEIGHBORS

CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

PATHS

3. While there are still more paths to explore:
o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding

neighbor and enqueue it.

CURRENT_PATH

{{0, 03, {1,0}, {1,1}} VALID_NEIGHBORS

CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

PATHS

3. While there are still more paths to explore:
o Dequeue path from queue.
o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding

neighbor and enqueue it.

CURRENT_PATH

{{0, 0}, {1,0}, {1,13}, {1,233 VALID_NEIGHBORS

CURRENT_PATH_CPY

Part |I: Maze
solveMaze()

3. While there are still more paths to explore:
o Dequeue path from queue.

o If this path ends at exit, this path is the solution!
o If path does not end at exit:
= For each viable neighbor of path end, make copy of path, extend by adding
neighbor and enqueue it.

\ CURRENT_PATH

{{0, 03, {1,03, {1,13, {1,23} } VALID_NEIGHBORS
CURRENT_PATH_CPY

PATHS

Part |I: Maze
solveMaze()

Repeat!

10,03, {1,08, {1,1}, {1,23}

CURRENT_PATH

VALID_NEIGHBORS

CURRENT_PATH_CPY

PATHS

Part I Maze
solveMaze()

{{}{ 03, 1,13, (1,23}

l i

Part |I: Maze
solveMaze()

Part |I: Maze
solveMaze()

e 1,23

N
CURRENT_PATH_EXIT

CURRENT_PATH

Part |I: Maze
solveMaze()

Done!
Return
CURRENT _PATH

e 1,23

- CURRENT_PATH_EXIT

CURRENT_PATH

Part |I: Maze
solveMaze()

Part |: Maze
solveMaze()

* Once you get a working solution, you’ll need to add graphics to the maze.

* We give you access to the MazeGraphics class to do this - all you need to
do is call the function

MazeGraphics: :highlightPath(Stack<GridLocation> path, string color)

e to highlight the current path that you’re considering.

* For more details about this documentation, look at MazeGraphics.hin your starter
project!

Part I: Maze

Part Il: Search engine

* In this final part, you’ll be putting your ADT skills to the test
by creating a data structure that can power a search engine.

 This is not an easy feat, so we’ll go step by step!

An old A6 in CS106b was

. Why does “MiniBrowser,” where
you implement page
history, autocorrect and

Shows you something auto scrolling! It was a
about the human . why does my dog eat grass toughie :p

condition, no? . why does my eye twitch

. why does my cat lick me

. why does my stomach hurt

.. why does my chest hurt

Part Il: Search engine

» The first thing you’ll need to do is implement the helper function

string cleanToken(string token)

that formats the provided TOKEN and returns the formatted verson.

» Here are the steps to formatting a token:
1. If TOKEN does not contain any letters at all, returnempty string (“”’);
2. Trim all leading and trailing punctuation from TOKEN.
e ,,.EG'GS!; becomes EG'GS
3. Convert TOKEN to lowercase.
* EGGS becomes eggs

e You might find the char functions isaplha() and ispunct() helpful here!

Part Il: Search engine

» Next, you’ll need to implement the following function:

Set<string> gatherTokens(string bodytext)

 Where BODYTEXT is a string consisting of all tokens found in a webpage.

» You must first tokenize the bodyText string into individual tokens separated by
spaces. Look at stringSplit() for help there!

* Next, clean each token with your shiny new cleanToken() function, and store them
in a Set<string> you'll return!

Part Il: Search engine

Part Il: Search engine
buildindex()

* |t’s now time for you to build
an inverted index! int buildIndex(string dbfile, Map<string, Set<string>>& index)

e This function takes in the name
of a database file that you will
parse, and a map that you will
populate, pairing keywords
with sets of urls that contain the {
keywords.

Small sample inverted index:

“seach” : { “google.com, bing.com” }
“login” : { “webkinz.com” }

}

Part Il: Search engine
buildindex()

* The database file that you’re
parsing will look something like
this:

» Basically, each collection of 2 lines
is a url-content combo.

* The first line of the pair will be a
URL and the second will be the text
content (all in one line) of the
corresponding page.

 You will need to populate the
map RESULT with pairs of
content tokens to sets of URL's
that contain the content tokens.

Pairs!

db file

www. shoppinglist.com
EGGS! milk, fish, @ bread cheese

www. rainbow.org

red ~green~ orange yellow blue indigo violet

www.dr.seuss.net
One Fish Two Fish Red fish Blue fish !!!
www.bigbadwolf.com

I'm not trying to eat you

Part Il: Search engine
buildindex()

e Here's the important thing:

» You've already written a function
gatherTokens() that turns a string
into a set of cleaned tokens! You
should probably use it here...

Pairs!

db file

www. shoppinglist.com
EGGS! milk, fish, @ bread cheese

www. rainbow.org

red ~green~ orange yellow blue indigo violet

www.dr.seuss.net
One Fish Two Fish Red fish Blue fish !!!
www.bigbadwolf.com

I'm not trying to eat you

Part Il: Search engine
buildindex()

A few tips about creating this
map:

» You’re going to need to store an
entry in the map once every two
lines (it takes 2 lines to get a
single key-value pair) - can you
manipulate a loop to help you do
this?

» readEntireFile()in filelib.h is an

easy way to read an entire file into
a vector using just the file name!

Pairs!

db file
www. shoppinglist.com
EGGS! milk, fish, @ bread cheese
www. rainbow.org
red ~green~ orange yellow blue indigo violet
www.dr.seuss.net
One Fish Two Fish Red fish Blue fish !!!

www.bigbadwolf.com

I'm not trying to eat you

Part Il: Search engine
buildindex()

 Some final notes about the
problem:

» Because the value in RESULT is a
Set<string>, you can treat
RESULT[somekey] as a Set<string>
and do things like:

« RESULT[somekey] += “hello”

Pairs!

db file

www. shoppinglist.com
EGGS! milk, fish, @ bread cheese

www. rainbow.org

red ~green~ orange yellow blue indigo violet

www.dr.seuss.net
One Fish Two Fish Red fish Blue fish !!!
www.bigbadwolf.com

I'm not trying to eat you

Questions about buildindex()?

Untitled 241.doc

Untitled 138 copy.docx

Untitled 138 copy Z, doex

Untitled 139. docx

Untitled 40 MOM ADDRESS.5pg

Untitled 242.doc

Untitled 243.doc

Untitled ﬁfﬁ IMPORTANT, doc
At ln l'_"'

PROTIP: NEVER LOOK IN SOMEONE
ELSE‘s DOCUMENTS FOLDER.

Part Il: Search engine
findQueryMatches()

* |n this next part, you’re actually going to be servicing a user query,
meaning that you’ll take in a search request and return a result!

Set<string> findQueryMatches(Map<string, Set<string>>& index, string query)

» Given a specific query string and an inverted index, mapping unique
words to sets of urls in which they appear, you need to return a set of
url’s that satisfy the query.

» But what does a query look like?

Part Il: Search engine
findQueryMatches()

U / ajllst of urls in which the above

f // this for you - it maps a string to

http://www.stanford.edu/

Part Il: Search engine
findQueryMatches()

* Here’s an example query:
* Fugu; +fish

* Here we have TWO tokens! You can isolate them with stringSplit().

» Notice that the second string contains (+)! The (+) sign is a special operator in
your query - it performs a set intersection between the left and right sets.

» An intersection means the Set<string> returned should contain only the urls that
contain both “fugu” AND ”fish”

 VERY important note: notice that the same punctuation stripping and
lowercase rules apply to tokens in your query string

* You’ll need to keep an eye out for the (+) operator; it’ll be the first character
of a query token - your string cleaning routine will attempt to remove it, so
keep that in mind!

Part Il: Search engine
findQueryMatches()

» Here’s another query:
« Cat Dog

 Like the last example, you’ll stringSplit() the line into two tokens.

Because there’s no operator here, you’ll use set union, meaning the set
you return should be a set of urls that either contain “Cat” OR “Dog”.

Union and Intersection

Union (no operator) - return

AUB = ‘ all url’s that contain at least
e 1 of the words!
Intersection (+ operator) -
AnB = return all url’s tht contain

BOTH tokens (small subset!)

Part Il: Search engine
findQueryMatches()

« Here’s another example:
e Bibimbap -mushrooms

» Here we’ve introduced another example with the (-) operator.
This operators performs set subtraction, meaning, the
resulting set should contain all urls that contain “bibimbap”
that DO NOT contain “mushrooms”

Part Il: Search engine
findQueryMatches()

» Here’s one last complex example:
e CS +106B -RECURSION!!! fun

» Here we have multiple tokens in our query string. We’ll first
need to split them and clean them to get
« { “cs”, “106b”, “recursion”, “fun” }

* You’ll of course need to remember the placement of the (+ and -)
operators, but | just wanted to show you the string cleaning here.

* From there, you will process the query from left to right.

* ((cs +106b) -recursion) fun

or
* ((cs” intersection “106b’’) subtracted from “recursion”) union “fun”

Part Il: Search engine
findQueryMatches()

« Some tips for findQuery Matches()

» First and foremost, be sure to break this problem down into actionable
pieces! Please use helper functions to solve this problem.

| would recommend reuising your cleanToken() helper function!

» The tricky set operation stuff isn’t actually as spooky as it might
initially seem - check out this set documentation and bask in the
operators we’ve provided you © (you’ll probably want +, *, and -)

setl + set2

set + value

setl += set2;

set += value;.

setl -= set2;.

set -= value;.

setl * set2

setl *= set2;

O(N)
O(N)
O(N)
O(log N)
O(N)
O(N)
O(N)
O(log N)
O(N)
O(N)

Returns the union of sets setl and set2, which is the set of elements that appear in at least one of the two sets.
Returns the union of set set1 and individual value value.

Adds all of the elements from set2 (or the single specified value) to set1.

Adds the single specified value to the set.

Returns the difference of sets set1 and set2, which is all of the elements that appear in set1 but not set2.

Returns the set set with value removed.

Removes the elements from set2 (or the single specified value) from set1.

Removes the single specified value from the set.

Returns the intersection of sets setl and set2, which is the set of all elements that appear in both.

Removes any elements from set1 that are not present in set2.

https://web.stanford.edu/dept/cs_edu/cppdoc/Set-class.html

Part Il: Search engine
findQueryMatches()

» Some more tips for findQuery Matches()

* You can always assume that a (+ or -) operator, if extant, will appear
as the first character of a query token. You cannot assume that the
characters following are non-punctuation characters

» Ex. { Apple +windows -!!linux }
« Remember (because this causes much grief later) that your query

needs to be case insensitive. “Apple” and “apple” should be looked
up the same (“apple”)!

Questions about findQueryMatches?

 This part is pretty complex,
remember to decompose!

GREETINGS, STRANGER.

]
WHATEVER QUEST DRIVES YoU,
ABANDON 1T

[
YOU SHALL FIND NO ANSWERS
IN THESE DESOLATE WASTES.

I KNEL:J T WOULDN'T

T HATE FEEUNG DESPERATE. ENOUGH To VI5
THE. SECOND PAGE OF GOOGLE. RESULTS.

Part Il: Search engine
building searchEngine()

* |t’s finally time for you to put
your querying skills to the test
- you’re going to write a
function that serves as a
search engine!

e You’ll be implementing the
following function:

void searchEngine(string dbfile)

Part Il: Search engine
building searchEngine()

* You will need to read in the
provided DBFILE and convert it
into an inverted index.

* You’ve already written the
functions to do this ©

QAT t Tl i seorcrcrsieCtring o

processed to build the index and
how many distinct words were
found in all of the files

* Think about your data structures -
is this data stored anywhere?

Part Il: Search engine
building searchEngine()

* You’ll then need to repeatedly
prompt the user for search
queries like the ones discussed
earlier.

* You will find the appropriate
Set<string> result for that
query and print it.

« Repeat until the user enters “”,
and then exit the program.

* Your goal is to match this
functionality exactly!

Stand by while building index...
Indexed 50 pages containing 5595 unique terms.

Enter query sentence (RETURN/ENTER to quit): llama
Found 1 matching pages
{"http://cs106b.stanford.edu/assignments/assign2/searchengine.html"}

Enter query sentence (RETURN/ENTER to quit): suitable +kits

Found 2 matching pages
{"http://cs106b.stanford.edu/assignments/assign2/searchengine.html", "http://cs106b.sta
nford.edu/qt/troubleshooting.html"}

Enter query sentence (RETURN/ENTER to quit): Mac linux -windows

Found 3 matching pages

{"http://cs106b.stanford.edu/lectures/sets-maps/ga.html", "http://cs106b.stanford.edu/q
t/install-linux.html", "http://cs106b.stanford.edu/qt/install-mac.html"}

Enter query sentence (RETURN/ENTER to quit): as-is wow!

Found 3 matching pages

{"http://cs106b.stanford.edu/about_assignments", "http://cs106b.stanford.edu/assignment
s/assignl/soundex.html", "http://cs106b.stanford.edu/assignments/assign2/searchengine.h
tml"}

Enter query sentence (RETURN/ENTER to quit):

All done!

Part Il: Search engine
building searchEngine()

« Some notes about
searchEngine()

* You shouldn’t have to write a ton
of new code here - virtually all
of the lifting has already been
done by the other functions in
the program - you’re just
bringing them together now!

« |f you’ve writtensome great
tests for your helper functions,
this part should just work! If you
encounter a bug, try to isolate it
to a particular function by using
the debugger!

Stand by while building index...
Indexed 50 pages containing 5595 unique terms.

Enter query sentence (RETURN/ENTER to quit): llama
Found 1 matching pages
{"http://cs106b.stanford.edu/assignments/assign2/searchengine.html"}

Enter query sentence (RETURN/ENTER to quit): suitable +kits

Found 2 matching pages
{"http://cs106b.stanford.edu/assignments/assign2/searchengine.html", "http://cs106b.sta
nford.edu/qt/troubleshooting.html"}

Enter query sentence (RETURN/ENTER to quit): Mac linux -windows

Found 3 matching pages

{"http://cs106b.stanford.edu/lectures/sets-maps/ga.html", "http://cs106b.stanford.edu/q
t/install-linux.html", "http://cs106b.stanford.edu/qt/install-mac.html"}

Enter query sentence (RETURN/ENTER to quit): as-is wow!

Found 3 matching pages

{"http://cs106b.stanford.edu/about_assignments", "http://cs106b.stanford.edu/assignment
s/assignl/soundex.html", "http://cs106b.stanford.edu/assignments/assign2/searchengine.h
tml"}

Enter query sentence (RETURN/ENTER to quit):

All done!

Any questions about Part I1?

That’s it! ' .

Stack Efron, 106B alum,
congratulating you on a
job well done!

