
YEAH A2

Fun with Collections!

ADT

•Logistics

•Part 1: Maze

•Part 2: Index

Agenda

• Due: Friday, October 2nd (11:59PM PDT)

• Grace period: Sunday October 4th (11:59PM
PDT)

• Must be completed individually!

Logistics

Questions about logistics?

•Logistics

•Part 1: Maze

•Part 2: Index

Agenda

• The warmups were designed to be fairly straightforward
problems that equip you with the tools needed to complete
the rest of the assignment!

• Please do the warmups before you attempt the assignment.
• I promise they’ll make your life easier ☺

• Your only deliverables for this part will be in
shortanswer.txt.

Warmups

Warmup 0: Patch the Debugger!

• This first part is simply a test to
verify that you're able to visualize
ADT's in the debugger!

• You should be able to run the
warmup program in the debugger
and see a view in the top right
like this when looking at ADT's. If
not, check out the website for
details on how to patch this!

• Thanks to SL Jeremy Barenholtz
for the fix!

Warmup 1: Observing ADT’s in the
Debugger

• For the first part, you’ll
examine the following
function:

• This function is already
implemented for you, and
you’ll be using the debugger
to step through it!

• To view the internals, put a
breakpoint on the first line of
the function and run the
program in the debugger!

Warmup 1: Observing ADT’s in the
Debugger

• In the top right corner of
QT, you’ll see the names of the
variables in your function! You
can expand them via the
arrows on the left!

• As you can see, you can peek
into the queue at runtime! As
you step thru the debugger,
you can watch these values
change in real time!

Warmup 2: Debugging an ADT question

• For this next part, you’re
going to use your new
debugging skills to debug this
function:

• Step through the function for a
few iterations and determine
where things go wrong!

Warmup 3: Debugging an Error

• For the final warmup, you’ll
be debugging the following
function:
• This function raises an error,

meaning during runtime, it
encounters a problem and
terminates!

• The problem is, you’re not
allowed to modify a data
structure while you loop thru
it with a for each loop.

Warmup 3: Debugging an Error

• You’ll need to step thru this
function in the debugger to
determine exactly where it
throws the error!

• Pro tip: remember this error
for later – if you’re looping
thru some data, don’t modify
it. If the code doesn’t crash,
it’ll usually give you strange
and incorrect behavior.

Questions about the warmups?

Part I: Maze

• Welcome to the first coding
part of the assignment!

• You’ll be working with a mazes
like the one to your right –
these mazes will start in the
top left and have exits in the
bottom right.

Part I: Maze

• Let’s talk a little more about
these mazes:
• The maze itself is actually

represented as a Grid<bool> in
your program, where a cell
marked true is an open corridor
and a cell marked false is a wall.

• mazeGrid[row][col] returns a
Boolean that indicates whether
{row, col} are the coordinates of
a wall or a corridor!

Part I: Maze

• Where do these Grid<bool>
come from?
• Great question, rhetorical

viewer. Mazes are provided to
you in the starter code as text
files.

• We’ve provided you the function

that reads in a text file like the
one on the right and converts it
into a Grid<bool>. We use ‘@’ to
represent walls and ‘-’ to
represent corridors.

Part I: Maze
GridLocations

• There’s a new abstraction
you’ll need to become
comfortable with using!

• A GridLocation represents a
pair of coordinates. You can
think of it like

{ row, col }

Questions about the Grid<bool> or
GridLocations?

Part I: Maze

• How can we store a path in
our maze?

Part I: Maze

• How can we store a path in
our maze?

• We can use a
Stack<GridLocation>
• In this case, the top of the stack

would represent the last visited
location (the exit in a complete
path!)

• The bottom would be the start of
the path, (typically the top left
corner).

Part I: Maze

• For some of the mazes we
provide for you, we also give
you the maze solutions stored
in a text file!

• Take a second to verify that
the locations below represent
a valid path out of the maze!
• The path reads left(start) to

right(end)

Part I: Maze

• We’ve also written a function
for you that turns a solution
.txt file into a
Stack<GridLocation> called

Questions about mazes, text files or data
structures?

Part I: Maze
generateValidMoves()

• To begin, you’re going to
implement the following
function:

• This function takes in a maze
as well as a current location in
that maze.

• You are tasked with returning
a set of valid neighbors
• These are locations one step

away in the (NSEW) directions
that are non-walls and in bounds!

wall

curwall

open

open

open

Part I: Maze
generateValidMoves()

• To begin, you’re going to
implement the following
function:

• This function takes in a maze
as well as a current location in
that maze.

• You are tasked with returning
a set of valid neighbors
• These are locations one step

away in the (NSEW) directions
that are non-walls and in bounds!

wall

curwall

open

open

open

Part I: Maze
generateValidMoves()

• To begin, you’re going to
implement the following
function:

• This function takes in a maze
as well as a current location in
that maze.

• You are tasked with returning
a set of valid neighbors
• These are locations one step

away in the (NSEW) directions
that are non-walls and in bounds!

wall

curwall

open

valid

valid

Part I: Maze
generateValidMoves()

• In this case, you’d return a
Set<GridLocation> that
contained 2 things: the
coordinates of the above
location and the coordinates
of the below location.

wall

curwall

open

valid

valid

Part I: Maze
generateValidMoves()

• Tips about generateValidMoves();
• You can use the Grid’s inbounds()

function to tell whether a
coordinate pair is within the
bounds of a grid.

• Be sure to add good tests for this
part – we specifically leave edge
cases out of the tests we provide
you.

• You need to generalize your
routine for validating a neighbor.
It is poor style to repeat the
process of validation 4 times –
once for each valid direction.
• Think about how you might use a

loop to fix this!

wall

curwall

open

valid

valid

Questions about generateValidMoves()?

wall

curwall

open

valid

valid

Part I: Maze
checkSolution()

• Let’s say now that you
generated a Grid<bool> and a
Stack<GridLocation>
representing a maze and a
solution, respectively, and
you wanted to verify that it
actually was the solution to a
maze.

• How would you do it?

Part I: Maze
checkSolution()

• Let’s say now that you
generated a Grid<bool> and a
Stack<GridLocation>
representing a maze and a
solution, respectively, and
you wanted to verify that it
actually was the solution to a
maze.

• How would you do it?

Part I: Maze
checkSolution()

• Here’s the criteria for a valid
solution:

{ 0,0 }

{ maze.numRows() – 1,

maze.numCols() – 1 }

Part I: Maze
checkSolution()

If you identify that any of these things is incorrect, you can raise an error
like this:

{ 0,0 }

{ maze.numRows() – 1,

maze.numCols() – 1 }

Part I: Maze
checkSolution()

• You’ll be implementing the following function:

that verifies that PATH is contains the correct sequence of locations that
navigate through MAZE without doing anything fishy.

• The function raises an ERROR if PATH is invalid, and it does nothing if the
path is valid.

• You can test this functionality with the EXPECT_ERROR() and
EXPECT_NO_ERROR() functions in the simple test framework!

Part I: Maze
checkSolution()

• A few more points about checkSolution:
• One of the things you’re going to have to do is examine the elements in PATH – but

you can’t use a for loop or a for-each loop to examine the internals of a Stack: what
can you do instead?

• Be sure that you test A LOT for this function – because there are so many cases,
there’s a lot of functionality and edge cases that you’re responsible for here!

• To verify that each location is a caridnal step away from the next, think about how
you can reuse your generateValidMoves() function to help.

• If you need to keep track of “visited” items, Sets are great!

Questions about checkSolution()?

If you can’t

checkSolution(), you might

run into this problem!

(please abide by the honor
code!)

Part I: Maze
solveMaze()

• Now it’s time for the big code in this part: solveMaze()!

• Up to this point, you’ve been validating pre-generated maze solutions
from text files. It’s now time to generate your own solutions to a given
maze!

• Given a Grid<bool> MAZE, it’s your job to return a Stack<GridLocation>
that contains the valid steps to escape it!

Part I: Maze
solveMaze()

• To programmatically generate a solution to a given maze, you’ll need to
use a Breadth-First Search (BFS) algorithm.

• This is the first complex algorithm you'll need to write up in this class!
Luckily, it's not too bad, and we'll go over it together.
• Here’s the algorithm:

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

openwall

wall

cur open

open

open

MAZE

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

MAZE

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

PATH

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{0,0}

CURRENT_PATH_EXIT

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{0,0}

CURRENT_PATH_EXIT

{1,2}

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{0,0}

CURRENT_PATH_EXIT

{1,2}

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur open

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{ {1, 0} }

VALID_NEIGHBORS

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{ {1, 0} }

VALID_NEIGHBORS{ {0, 0} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{ {1, 0} }

VALID_NEIGHBORS{ {0, 0}, {1,0} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

{ {0, 0} }

CURRENT_PATH

{ {1, 0} }

VALID_NEIGHBORS{ {0, 0}, {1,0} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

CURRENT_PATH

VALID_NEIGHBORS

CURRENT_PATH_CPY

{ {0, 0}, {1,0} }

Repeat!

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur valid

open

open

PATHSMAZE

CURRENT_PATH

{ {0, 0}, {1,0} }

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

cur

{1,0}

CURRENT_PATH_EXIT

{1,2}

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

cur

{1,0}

CURRENT_PATH_EXIT

{1,2}

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

open

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

valid

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

{ 1,1 }

VALID_NEIGHBORS

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

valid

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

{ 1,1 }

VALID_NEIGHBORS

cur

{ {0, 0}, {1,0} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

valid

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

{ 1,1 }

VALID_NEIGHBORS

cur

{ {0, 0}, {1,0} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

valid

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

{ 1,1 }

VALID_NEIGHBORS{ {0, 0}, {1,0}, { 1,1 } }

CURRENT_PATH_CPY

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

valid

open

PATHSMAZE

{ {0, 0}, {1,0} }

CURRENT_PATH

{ 1,1 }

VALID_NEIGHBORS{ {0, 0}, {1,0}, { 1,1 } }

CURRENT_PATH_CPY

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

seen

valid

open

PATHSMAZE

CURRENT_PATH

VALID_NEIGHBORS

CURRENT_PATH_CPY

cur
{ {0, 0}, {1,0}, { 1,1 } }

Repeat!

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

open

open

PATHSMAZE

{ {0, 0}, {1,0}, { 1,1 } }

seen

valid

cur

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

open

open

PATHSMAZE

{ {0, 0}, {1,0}, { 1,1 } }

seen

valid

cur

CURRENT_PATH

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

open

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

open

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

open

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

{1,1} !=

{1,2}, QED

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

open

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

{ 1,2 }

VALID_NEIGHBORS
valid

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

{ 1,2 }

VALID_NEIGHBORS
valid

{ {0, 0}, {1,0}, {1,1} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

{ 1,2 }

VALID_NEIGHBORS
valid

{ {0, 0}, {1,0}, {1,1} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

{ 1,2 }

VALID_NEIGHBORS
valid

{ {0, 0}, {1,0}, {1,1}, {1,2} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, { 1,1 } }

cur

seen

{ 1,2 }

VALID_NEIGHBORS
valid

{ {0, 0}, {1,0}, {1,1}, {1,2} }

CURRENT_PATH_CPY

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

cur

seen

VALID_NEIGHBORS
valid

CURRENT_PATH_CPY

{ {0, 0}, {1,0}, {1,1}, {1,2} }

Repeat!

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

cur

seen

valid

{ {0, 0}, {1,0}, {1,1}, {1,2} }

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, {1,1}, {1,2} }

seen

cur

seen

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, {1,1}, {1,2} }

seen

cur

seen

{1,2}

CURRENT_PATH_EXIT

{1,2}

Part I: Maze
solveMaze()

• Let’s walk thru a very small example:

wall

wall

cur

PATHSMAZE

seen

CURRENT_PATH

{ {0, 0}, {1,0}, {1,1}, {1,2} }

seen

cur

seen

{1,2}

CURRENT_PATH_EXIT

{1,2}

Done!

Return

CURRENT_PATH

Part I: Maze
solveMaze()

• A few notes about this problem:
• Once again, use your validMoves() helper you wrote earlier to get valid neighbors!

• You can return an empty stack {} if you exhaust the maze and can’t find a solution.

• You need to keep track of visited locations and ensure that you don’t revisit them!
Else you’ll enter a loop :/

• Follow the provided algorithm closely!

• Read the handout for more deets about BFS!

Part I: Maze
solveMaze()

• Once you get a working solution, you’ll need to add graphics to the maze.

• We give you access to the MazeGraphics class to do this – all you need to
do is call the function

• to highlight the current path that you’re considering.
• For more details about this documentation, look at MazeGraphics.h in your starter

project!

Part I: Maze

• Any questions about part 1? That’s it!

•Logistics

•Part 1: Maze

•Part 2: Index

Agenda

Part II: Search engine

• In this final part, you’ll be putting your ADT skills to the test
by creating a data structure that can power a search engine.
• This is not an easy feat, so we’ll go step by step!

Shows you something

about the human
condition, no?

An old A6 in CS106b was

“MiniBrowser,” where
you implement page
history, autocorrect and

auto scrolling! It was a
toughie :p

Part II: Search engine

• The first thing you’ll need to do is implement the helper function

that formats the provided TOKEN and returns the formatted verson.

• Here are the steps to formatting a token:
1. If TOKEN does not contain any letters at all, return empty string (“”);

2. Trim all leading and trailing punctuation from TOKEN.
• ,,.EG'GS!; becomes EG'GS

3. Convert TOKEN to lowercase.
• EGGS becomes eggs

• You might find the char functions isaplha() and ispunct() helpful here!

Part II: Search engine

• Next, you’ll need to implement the following function:

• Where BODYTEXT is a string consisting of all tokens found in a webpage.
• You must first tokenize the bodyText string into individual tokens separated by

spaces. Look at stringSplit() for help there!

• Next, clean each token with your shiny new cleanToken() function, and store them
in a Set<string> you'll return!

Part II: Search engine

• Any questions about gatherTokens()?

Part II: Search engine
buildIndex()

• It’s now time for you to build
an inverted index!
• This function takes in the name

of a database file that you will
parse, and a map that you will
populate, pairing keywords
with sets of urls that contain the
keywords.

Small sample inverted index:

{

“seach” : { “google.com, bing.com” }
“login” : { “webkinz.com” }

}

Part II: Search engine
buildIndex()

• The database file that you’re
parsing will look something like
this:
• Basically, each collection of 2 lines

is a url-content combo.

• The first line of the pair will be a
URL and the second will be the text
content (all in one line) of the
corresponding page.

• You will need to populate the
map RESULT with pairs of
content tokens to sets of URL's
that contain the content tokens.

P
a
ir

s!

db file

Part II: Search engine
buildIndex()

• Here's the important thing:
• You've already written a function

gatherTokens() that turns a string
into a set of cleaned tokens! You
should probably use it here...

P
a
ir

s!

db file

Part II: Search engine
buildIndex()

• A few tips about creating this
map:
• You’re going to need to store an

entry in the map once every two
lines (it takes 2 lines to get a
single key-value pair) – can you
manipulate a loop to help you do
this?

• readEntireFile() in filelib.h is an
easy way to read an entire file into
a vector using just the file name!

P
a
ir

s!

db file

Part II: Search engine
buildIndex()

• Some final notes about the
problem:
• Because the value in RESULT is a

Set<string>, you can treat
RESULT[somekey] as a Set<string>
and do things like:

• RESULT[somekey] += “hello”

P
a
ir

s!

db file

Questions about buildIndex()?

Part II: Search engine
findQueryMatches()

• In this next part, you’re actually going to be servicing a user query,
meaning that you’ll take in a search request and return a result!

• Given a specific query string and an inverted index, mapping unique
words to sets of urls in which they appear, you need to return a set of
url’s that satisfy the query.

• But what does a query look like?

Part II: Search engine
findQueryMatches()

• Here’s an example query:
• flake

• Handling this request is easy! You’d just return a list of urls in which the above
word appears (in this case, www.Stanford.edu).

• Conveniently, the given paramenter INDEX does this for you – it maps a string to
a set of urls in which that string appears!
• Return index[query]

• Let’s try a more complex one…

http://www.stanford.edu/

Part II: Search engine
findQueryMatches()

• Here’s an example query:
• Fugu; +fish

• Here we have TWO tokens! You can isolate them with stringSplit().

• Notice that the second string contains (+)! The (+) sign is a special operator in
your query – it performs a set intersection between the left and right sets.
• An intersection means the Set<string> returned should contain only the urls that

contain both “fugu” AND ”fish”

• VERY important note: notice that the same punctuation stripping and
lowercase rules apply to tokens in your query string

• You’ll need to keep an eye out for the (+) operator; it’ll be the first character
of a query token – your string cleaning routine will attempt to remove it, so
keep that in mind!

Part II: Search engine
findQueryMatches()

• Here’s another query:
• Cat Dog

• Like the last example, you’ll stringSplit() the line into two tokens.
Because there’s no operator here, you’ll use set union, meaning the set
you return should be a set of urls that either contain “Cat” OR “Dog”.

Union (no operator) – return

all url’s that contain at least

1 of the words!

Intersection (+ operator) –

return all url’s tht contain

BOTH tokens (small subset!)

Part II: Search engine
findQueryMatches()

• Here’s another example:
• Bibimbap -mushrooms

• Here we’ve introduced another example with the (-) operator.
This operators performs set subtraction, meaning, the
resulting set should contain all urls that contain “bibimbap”
that DO NOT contain “mushrooms”

bibimbap mushrooms

Part II: Search engine
findQueryMatches()

• Here’s one last complex example:
• CS +106B –RECURSION!!! fun

• Here we have multiple tokens in our query string. We’ll first
need to split them and clean them to get
• { “cs”, “106b”, “recursion”, “fun” }

• You’ll of course need to remember the placement of the (+ and -)
operators, but I just wanted to show you the string cleaning here.

• From there, you will process the query from left to right.
• ((cs +106b) –recursion) fun

or

• ((“cs” intersection “106b”) subtracted from “recursion”) union “fun”

Part II: Search engine
findQueryMatches()

• Some tips for findQuery Matches()
• First and foremost, be sure to break this problem down into actionable

pieces! Please use helper functions to solve this problem.

• I would recommend reuising your cleanToken() helper function!

• The tricky set operation stuff isn’t actually as spooky as it might
initially seem – check out this set documentation and bask in the
operators we’ve provided you ☺ (you’ll probably want +, *, and -)

https://web.stanford.edu/dept/cs_edu/cppdoc/Set-class.html

Part II: Search engine
findQueryMatches()

• Some more tips for findQuery Matches()
• You can always assume that a (+ or -) operator, if extant, will appear

as the first character of a query token. You cannot assume that the
characters following are non-punctuation characters

• Ex. { Apple +windows -!!linux }

• Remember (because this causes much grief later) that your query
needs to be case insensitive. “Apple” and “apple” should be looked
up the same (“apple”)!

Questions about findQueryMatches?

• This part is pretty complex,
remember to decompose!

Part II: Search engine
building searchEngine()

• It’s finally time for you to put
your querying skills to the test
– you’re going to write a
function that serves as a
search engine!

• You’ll be implementing the
following function:

Part II: Search engine
building searchEngine()

• You will need to read in the
provided DBFILE and convert it
into an inverted index.
• You’ve already written the

functions to do this ☺

• You’ll then need to display to the
user how many URL’s were
processed to build the index and
how many distinct words were
found in all of the files
• Think about your data structures –

is this data stored anywhere?

Part II: Search engine
building searchEngine()

• You’ll then need to repeatedly
prompt the user for search
queries like the ones discussed
earlier.

• You will find the appropriate
Set<string> result for that
query and print it.

• Repeat until the user enters “”,
and then exit the program.

• Your goal is to match this
functionality exactly!

Part II: Search engine
building searchEngine()

• Some notes about
searchEngine()
• You shouldn’t have to write a ton

of new code here – virtually all
of the lifting has already been
done by the other functions in
the program – you’re just
bringing them together now!

• If you’ve written some great
tests for your helper functions,
this part should just work! If you
encounter a bug, try to isolate it
to a particular function by using
the debugger!

Any questions about Part II?

That’s it!

Congrats!

Nice job!

Great work!

You did it! Stack Efron, 106B alum,

congratulating you on a

job well done!

