
YEAH Hours A3
Recursion!

-Professor Oak, CS106B alum
and recursion pro

This week.... Recursion!
● Recursion is the process by which a function

calls itself.

● Recursive solutions consist of one or more

base case(s), which are specified terminating

conditions for a recursive function, and recursive

case(s), which advance your recursive path one step towards your base

case.

● Recursion can be tricky! So be ready to start this assignment early! The

good news is, you shouldn't have to write much code at all!

Source, XKCD

A3 Logistics

● Due Friday Oct 9th (11:59PDT)

● Late Submission Deadline Sunday Oct 11th (11:59PDT)

● As always, work must be done individually.

Let’s take a look at Assignment 3
● Your assignment consists of five fun and exciting parts!

○ 1. Recursion Debugging Warmup

○ 2. Balanced - A program that verifies that an expression has a

balanced amount of parentheses / brackets

○ 3. KarelGPS - An old friend returns in a recursive adventure!

○ 4. Sierpinski - The ol’ faithful triangle drawing program that has

brought thousands of 106B students into the recursive world

○ 5. Merge - Harness the power of recursion to write a blazingly-fast

sorting algorithm!

Part 1: Recursion Warmup!
● In this part, you will be examining two recursive functions.

○ int factorial(int n) -> A function that computes n factorial (n!)

○ You will step through this function in the debugger with a focus on

the call stack. The call stack is the list of function calls that brought

you to your current line in the program. Does this call stack make

sense for a recursive function?

Part 1: Recursion Warmup!
● The factorial(int n) function is buggy! When given negative input, the

function calls n * factorial(n-1) with no base case to stop it, so you end

up totally blowing up your program memory. This is called Stack

Overflow.

● You’ll learn how to use the debugger to detect stack overflow (which can

be common in recursive programs!)

● tldr; be careful with your base cases. If you don’t account for a certain

kind of input, stack overflow or other undesirable behavior is likely!

Part 1: Recursion Warmup!
● The second function you will look at is double power(int base, int exp)

○ This function returns the mathematical result base^(exp).

○ Sadly, there is a bug in the recursive power() function, specifically

when exp is negative. It’s your job to write tests to uncover the bug!

○ Hint: The starter code gives you a great randomized test for power()
on positive bases and exponents -- maybe you can modify/repurpose

it to support negative numbers?

○ You’ll report your findings, as well as answer related questions in

shortanswer.txt

Questions about part 1?

Source, XKCD

Part 2: Balanced
● Implement the function bool isBalanced(string str), which, given a

string, returns whether the bracketing operators are properly balanced.

○ The bracketing operators you will be using are these: [] {} ()

○ We define balance as properly nested such that they would compile

in a c++ program.

○ A correct example: (){([])(())} -- (spaced out for viewing)

○ An incorrect example: { (})
● isBalanced() won’t actually have much code in it… you’re simply going

to call the following two functions ->

Part 2: Balanced
● You will need to implement two functions:

○ 1 - string operatorsFrom(string str);
■ Given string, remove all non-operator characters->[] {} ()
■ You must implement this recursively. To do so, you should

process a single character at a time and recurse on the
remainder of the string.

■ Hint: Consider using str.substr(1) to easily get the rest of
the string.

■ Remember to test this function thoroughly before moving
on! Bugs here could go a long way...

Part 2: Balanced
● You will need to implement two functions:

○ 1 - string operatorsFrom(string str);
■ Given string, remove all non-operator characters->[] {} ()
■ You must implement this recursively. To do so, you should

process a single character at a time and recurse on the
remainder of the string.

■ Hint: Consider using str.substr(1) to easily get the rest of
the string.

■ Remember to test this function thoroughly before moving
on! Bugs here could go a long way...

Tip just for YEAH
viewers: this
kind of recursion
is very common
with strings.
You’ll see a
similar thing
done with a
string reverse()
function

Part 2: Balanced
● You will need to implement two functions:

○ 2 - bool operatorsAreMatched(string ops);
■ This is the function that truly implements the isBalanced()

process.
■ The handout gives you some really really good advice

here: a string is balanced iff (if and only if ;))
● The string is empty.
● The string contains "()", "[]", or "{}" as a substring and the rest

of the string is balanced after removing that substring.

■ From these givens, we can derive the following...

Part 2: Balanced
● If your string is non-empty, you have work to do…

○ Look for an instance of “{}” “[]” or “()” in your string.

■ If you find one, remove it, and see if the remainder of the string

is balanced!

■ If you don’t find one, your string isn’t balanced :(.

● If your string is empty, your string is balanced!

Part 2: Balanced
● A few notes on this problem

○ Both helper functions should be implemented recursively, and you

should not have any loops or data structures in your solution.

○ Be sure you thoroughly test these two helpers -- if you get errors

from isBalanced(), it’s more difficult to see where your bug came

from!

○ You can assume that operatorsAreMatched() always takes in strings

of only operators, but if the input string does not, the function

should return false, as expected. (i.e. don’t throw an error)

Questions about part 2?

Source, XKCD

Part 3: KarelGPS

● For those of you who don’t know Karel -- this is Karel!

Part 3: KarelGPS

● For those of you who don’t know Karel -- this is Karel!

● Karel lives in an x-y coordinate system, where rows are

called “streets” and columns are called “avenues”

Part 3: KarelGPS

● For those of you who don’t know Karel -- this is Karel!

● Karel lives in an x-y coordinate system, where rows are

called “streets” and columns are called “avenues”

○ Where is Karel on the grid right now?

Part 3: KarelGPS

● For those of you who don’t know Karel -- this is Karel!

● Karel lives in an x-y coordinate system, where rows are

called “streets” and columns are called “avenues”

○ Where is Karel on the grid right now?

● Karel dreams of getting to the intersection of 1st and

1st, and they want to do it in the least number of

moves possible: can you help Karel do that using

recursion?

Part 3: KarelGPS

● Karel moves by turning in a direction and moving one

unit of distance. Therefore, to get to 1,1, Karel should

only be able to move one unit west or one unit south.

○ Karel could also go North / East, but Karel wants

to get to 1,1 quickly, so we’re not going to

consider those possibilities!

Part 3: KarelGPS

● Karel is pretty good at data analysis, so all they need is

for you to count the number of routes that they could

possible take from their starting point to get to 1,1.

Part 3: KarelGPS

● Karel is pretty good at data analysis, so all they need is

for you to count the number of routes that they could

possible take from their starting point to get to 1,1.

● Therefore, you’ll need to write the function:

which, given the street-avenue combo, counts the

number of possible routes Karel can take to get to 1,1

Part 3: KarelGPS

● A few details:

● At any point in time (any location), think about the

‘choices’ you can make. Which directions is Karel

allowed to go, and what does that look like in a function

call?

● Think about base and edge cases here. Are there times

in which Karel cannot go in a direction, but still needs to

move?

● All you need to do is return a count of the unique paths.

There’s no need to print anything

Part 3: KarelGPS

● A few more deets:

● Although you can expect that all street-avenue pairs

given to you will be >= 1, we can’t promise it in our tests

>:). You should throw an error if such a thing happens,

and test that behavior with EXPECT_ERROR

● Here’s a hint from me: you don’t actually need to

declare any integers to solve this problem

Questions about part 3?
● Don’t overthink this problem! I’d highly recommend drawing pictures,

and working through small examples you can trace your code on :)

okurrrrrrrr!

Artist Cardi 106B, upon hearing about your
heroic efforts to bring Karel home

Part 4: Sierpinski
● In this part, you’ll be asked to draw n-order Sierpinski Triangles,

named after Polish Mathematician Wacław Sierpiński.

● The Sierpinski triangle is defined recursively, meaning:
○ An order-0 Sierpinski triangle is a plain filled triangle.
○ An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of order n – 1,

each half as large as the main triangle, arranged so that they meet corner-to-corner.

● int drawSierpinskiTriangle(GWindow& window, GPoint one, GPoint two, GPoint three, int order)

● void fillBlackTriangle(GWindow& window, GPoint one, GPoint two, GPoint three)

wikipedia

Part 4: Sierpinski
● int drawSierpinskiTriangle(GWindow& window, GPoint one, GPoint two,

GPoint three, int order)

● void fillBlackTriangle(GWindow& window, GPoint one, GPoint two,

GPoint three)

○ A GWindow is just the console object that you’ll be drawing on: you

can ignore it :p

○ drawSierpinskiTriangle() returns the number of triangles it drew.

Part 4: Sierpinski
● A few implementation thoughts:

○ If order is negative you should throw an error!

○ For any given recursive case, how many calls to

drawSierpinskiTriangle() should you be making? At what locations?
○ An order-0 Sierpinski triangle is a plain filled triangle.
○ An order-n Sierpinski triangle, where n > 0, consists of three Sierpinski triangles of order n – 1,

each half as large as the main triangle, arranged so that they meet corner-to-corner.

Part 4: Sierpinski
● Tips:

○ The GPoint object contains two doubles: x and y. To access them, use

point.x and point.y. (sound familiar?)

○ To declare a new GPoint, an easy way of doing so is using the {}

brackets.

■ E.x. GPoint p = { 1.0, 2.0 };

○ To get the midpoint between two points, you can write

■ GPoint midpt =

 { (p1.x + p2.x) / 2, (p1.y + p2.y) / 2 };

Part 4: Sierpinski
● More tips:

○ Highly recommend drawing this one out and planning exactly where

your points are going to be before coding. Even if you understand this

problem, it’s still easy to make math errors (trust me!)

○ When returning how many triangles were drawn by a call, think about

that number recursively -- don’t just compute it from the first call. We

want to see your recursive calls work together to compute this number.

Think about the Karel assignment you just did :)

Questions about part 4?

Part 5: Merging Sorted Sequences

● In this part of the assignment, you’re going to be tasked with
implementing a very famous sorting algorithm called MergeSort.
MergeSort is a recursive divide-and conquer algorithm that achieves an
impressive runtime by recursively splitting and recombining its data in
sorted order.

● In this assignment, however, you’re actually going to be implementing a
special ~flavor~ of mergeSort!

● Let’s go through it step by step.

Part 5: Merging Sorted Sequences

NOTE: Don’t worry about
this diagram too much --
it’s a little thicc. I’m happy
to talk about mergeSort
more after YEAH, but you
don’t need to know
everything about it to get
this part done!

Part 5: Merging Sorted Sequences

Part 1: Split
sequences in half
until you get
singleton elements

Part 2: Recombine
each pair in order

Part 5: Merging Sorted Sequences

● Although the diagram above made it look like you’ll be working with a

Vector<int>, in this part, we’ll be using a Vector<Queue<int>>. Don’t

worry! It doesn’t add any complexity to the problem!

○ Just think of every element in the collection as a Queue, instead of a

single number.

Part 5: Merging Sorted Sequences

● The first thing you’ll need to do in this part is write the function that

merges two singleton elements.

○ In this case, that’s merging two sorted Queue<int>’s to make one

large sorter Queue<int>.

○ Why are they already sorted? In the beginning we’ll just guarantee

it, so in subsequent merges, they’ll be sorted too. That’s just how

mergeSort works 😎

Part 5: Merging Sorted Sequences

● More specifically you’ll need to implement the above function. It should

merge the queue’s one and two, and return a sorted version that

contains all element from both.

○ Sanity Check -- why are the queue’s passed by value?

Part 5: Merging Sorted Sequences

● More specifically you’ll need to implement the above function. It should

merge the queue’s one and two, and return a sorted version that

contains all element from both.

○ Sanity Check -- why are the queue’s passed by value?

● The queue’s will be sorted from smallest to largest, so the first element

you dequeue() will be the smallest element in the queue.

○ Hint -- this fact is very useful for putting elements together in a

larger queue.

Part 5: Merging Sorted Sequences

● More deets about this function:

○ It’s very easy to make this function large and repetitive -- you can

solve this in a compact way, we promise!

■ You should never feel like you’re copying any code on this part.

Part 5: Merging Sorted Sequences

● More deets about this function:

○ It’s very easy to make this function large and repetitive -- you can

solve this in a compact way, we promise!

■ You should never feel like you’re copying any code on this part.

○ The two queue’s you’re given are not guaranteed to the be the same

length. What should you do if one queue has ran out of elements but

another has not?

Part 5: Merging Sorted Sequences

● Even more deets about this function:

○ Remember when we said that the queue’s given to you were in

sorted order? We lied… sort of (sort, get it hahahaha)

Part 5: Merging Sorted Sequences

● Even more deets about this function:

○ You’ll need to verify that the queue’s given are in sorted order, and

raise an error if they’re not.

Part 5: Merging Sorted Sequences

● Even more deets about this function:

○ You’ll need to verify that the queue’s given are in sorted order, and

raise an error if they’re not.

■ The easiest way to do this is to write a helper that just does a

full pass through both queue’s before you merge, verifying that

everything is sorted.

■ The more complicated yet faster way is to somehow verify that

the queue’s are in order during the merge itself… this might

require some extra bookkeeping on your end.

Part 5: Merging Sorted Sequences

● Even more deets about this function:

○ You’ll need to verify that the queue’s given are in sorted order, and

raise an error if they’re not.

■ The easiest way to do this is to write a helper that just does a

full pass through both queue’s before you merge, verifying that

everything is sorted.

■ The more complicated yet faster way is to somehow verify that

the queue’s are in order during the merge itself… this might

require some extra bookkeeping on your end.

Part 5: Merging Sorted Sequences

● One last thing…
○ As tempting as it might be, please implement this iteratively.

○ Let me restate: you may not use recursion to complete this

function. It produces too many stack frames, and could crash your

program.

Questions about binary merge?

Part 5: Merging Sorted Sequences

● It’s time for the final code of the assignment!

Part 5: Merging Sorted Sequences

● You’ll be writing the above function, that takes in a sequence, or a Vector

of Queue<int>’s, and returns a single Queue<int> that contains all

elements from the Vector of Queue’s but is completely sorted!

● This might sound tricky, but we’ve given you another algorithm to follow

here!

Part 5: Merging Sorted Sequences

Part 5: Merging Sorted Sequences

● Let’s do a little sanity check of the algorithm to ensure it does what we’re

expecting:

Part 5: Merging Sorted Sequences

● Let’s do a little sanity check of the algorithm to ensure it does what we’re

expecting:

○ Step 1 divides the Vector ALL into two halves, a left half and a right

half.

Part 5: Merging Sorted Sequences

● Let’s do a little sanity check of the algorithm to ensure it does what we’re

expecting:

○ Step 1 divides the Vector ALL into two halves, a left half and a right

half.

○ Step 2 calls recMultiMerge() on both halves. Now we have a

Queue<int> representing the left half, and a Queue<int>

representing the right half.

Part 5: Merging Sorted Sequences

● Let’s do a little sanity check of the algorithm to ensure it does what we’re

expecting:

○ Step 1 divides the Vector ALL into two halves, a left half and a right

half.

○ Step 2 calls recMultiMerge() on both halves. Now we have a

Queue<int> representing the left half, and a Queue<int>

representing the right half.

○ Step 3 returns the result of calling your merge function on both

halves -- it returns a single Queue<int> -- does that sound right?

Part 5: Merging Sorted Sequences

● Some notes on this problem:

○ It might feel weird to jump into that algorithm without fully

understanding why mergesort works -- it’s actually a little

unintuitive, but I promise the algorithm works. I’ll stay after and

explain if anyone wants to know more!

○ Be sure that you’ve got the right set of base cases here -- for

example, what should you do if the Vector is empty?

Any question about part 5?

● You’ve just (more or less) implemented the function mergeSort, which,

when run on a Vector<int> has a runtime of Nlog(N), where N is the

number of ints in the container. Funnily enough, Nlog(N) is actually the

fastest you can do with comparative-based sorting. Want to know why?

Take CS161!

That’s it!

● Good luck! Recursion is really difficult to grasp at first, but over time (with

practice), you’ll start seeing problem decomposition a little differently.

○ Be sure to start this assignment early! It’s not a lot of code, but the

few lines you write need to be precise. I always say that the more

code you write in your recursive functions, the more likely it is that

your program won’t work.

○ Feel free to ping your SL or go to office hours or LAIR. It’s really

important to understand recursion, because we’re going to use it

frequently for the rest of the quarter!

recursion

