
YEAH Hours 
A5

HEAP PQ



Let’s take a second…

•Congrats, you’re past the halfway point in the quarter!

• Take a second to pat yourself on the back. This is hard 

stuff, and you’re doing great ☺

Stack Efron, CS106B alum and LIFO enthusiast, 
congratulating on a job well done so far!



An informal announcement...

•The deadline to apply to become a section leader for current 106B students is today! (10/23)

•It's an amazing Stanford job!

• Incredible community + network

• You get paid!

• Give back to the program that supported you!

• Amazing events with lecturers / tech recruiters!

• This wonderful program has made me want to teach!!



Assignment logistics

•The assignment is due on Wednesday October 28th at 11:59PM PDT

• The grace period for submission expires Friday, October 30th at the same time.

•Try and start early! This one can be tricky to debug if you're not careful!



The Breakdown:

1. Warmups – Two exercises in which you learn more helpful tips about using the debugger. 

We highly recommend paying close attention to these in the handout, because 

debugging the PQ assignment is historically quite difficult – these were designed to help!

2. Part 1: PQ Sorted Array – Implement enqueue() in a self-sorting priority queue!

3. Part 2: PQ Client Tasks – Using a priorityqueue, what kinds of powerful things can you 

do?

4. Part 3: Heap PQ – Implement a priorityqueue using a binary min-heap!

5. Part 4: Data Demos – You don't have to do any work here – watch some incredible 

graphics demos that showcase your hard work!



Warmup 
Debrief

• In this week’s warmups, you’ll 

examine a bouncing balls program 

to learn about debugging objects.

• In the above program, a number of 

balls are rendered on screen, and 

they move randomly around the 

screen.

• Unfortunately, there's a rather 
conspicuous bug in the program. We 

want you to try and figure out what the 
issue is!



Warmup 
Debrief

•To debug this program, you're going 

to need to examine member 

variables in the debugger. Luckily, 

viewing these members is just like 

how you viewed program variables 

before!

•You'll also learn how to 

set conditional breakpoints, 

which are breakpoints that 

only trigger when the program is at a 

pre-defined state.



Warmup 
Debrief

•For the next part of the warmup, 

you'll be debugging various 

functions that operate on c++ arrays.

•In this assignment, array 'elements' 

will be defined by the struct to the 

right. Structs are 

like lightweight objects!



Warmup 
Debrief

•There are 4 memory error cases that you'll observe:

1. Dereferencing a nullptr address

2. Accessing an index outside the allocated array 

bounds

3. Accessing memory after it has been deallocated

4. Deallocating the same memory twice

•What do you think will happen in each of these 

cases?



What’s a priority queue?

•A priority queue, or a pq as lazy computer scientists like 

to say, is a queue-like data structure (think enqueue() 

and dequeue()), but it has a cool extra feature!

• All elements in a pq are assigned a priority upon 

enqueue(), and that priority determines the order that 

they will be dequeue()’d in!

• For this assignment, your pq will store DataPoint 

structs, that have embedded priorities

• A pq can either prioritize high priorities or low 

priorities, meaning that the element dequeue()’d will 

always be the one with the highest or lowest priority.

• We’ll be very clear about which magnitude we care 

about each time ☺. A “max” priotiy queue of integers. Notice how the 

structure doesn’t have to be sorted, so long as the 

“highest priority element” is always next to be 

dequeue()’d

Dequeue



Part 1: PQ Sorted Array

•For this first part, we’re giving you almost fully implemented priority queue .h and .cpp

files!

•The data structure that stores the pq is an array of DataPoints, much like you’ve seen in 

lecture and section examples!

• In this particular array, all elements are sorted from high to low priority (front to back), and the 

smallest priority element will be dequeue()’d first!

•How does this queue work?

So important, I'll say it twice!



Let’s see an example…

0 1 2 3 4

• To simplify these examples, let's just assume that my priority queue stores 
integers that represent their own priority!



Let’s see an example…

0 1 2 3 4

• To simplify these examples, let's just assume that my priority queue stores 
integers that represent their own priority!

• Whereas you will need to enqueue DataPointstructs and extract the priority!



Let’s see an example…

0 1 2 3 4

• To simplify these examples, let's just assume that my priority queue stores 
integers that represent their own priority!

• Whereas you will need to enqueue DataPointstructs and extract the priority!



Let’s see an example…

0 1 2 3 4

PQ.enqueue(10);



Let’s see an example…

0 1 2 3 4

PQ.enqueue(10);



Let’s see an example…

10

0 1 2 3 4

PQ.enqueue(10);



Let’s see an example…

10

0 1 2 3 4

PQ.enqueue(7);



Let’s see an example…

10

0 1 2 3 4

PQ.enqueue(7);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(7);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(5);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(5);



Let’s see an example…

10 7 5

0 1 2 3 4

PQ.enqueue(5);



Let’s see an example…

10 7 5

0 1 2 3 4

PQ.dequeue();



Let’s see an example…

10 7 5

0 1 2 3 4

PQ.dequeue();

yeet!



Let’s see an example…

10 7

0 1 2 3 4

PQ.dequeue();



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(20);



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(20);



Let’s see an example…

0 1 2 3 4

PQ.enqueue(20);

Sideways yeet! 



Let’s see an example…

7

0 1 2 3 4

PQ.enqueue(20);

Sideways yeet!



Let’s see an example…

10 7

0 1 2 3 4

PQ.enqueue(20);



Let’s see an example…

20 10 7

0 1 2 3 4

PQ.enqueue(20);



Part 1: PQ Sorted Array

•In this part of the assignment, you’ll be asked to implement a single method in the 

pqsortedarray.cpp file: the enqueue(DataPoint element) method!

•The rest of the pqsortedarray.cpp pqsortedarray.h are completed for you!

•You are responsible for inserting the provided element in the correct place in the array to 

preserve the sorted order.

• If you are not appending to the end of the array, you will have to shift the contents of the array over 

in order to accommodate this new element.

• If you attempt the enqueue() an element when the array is full, you are responsible for resizing the 

array. We recommend doubling the current capacity.



Part 1: PQ Sorted Array

Helpful hints:

•You might want to make the resize() method a private helper method – it makes for a 

cleaner implementation.

•Apart from enqueue(), you may not modify any other functions. Adding helpers is okay, 

though!

•Not sure how to resize an array? Take a look at Section 5’s RBQueue example from section!



Part 1: PQ Sorted Array

Debugging advice:

•Debugging this assignment is a little different than debugging others, because you can't interact 

with the internals of your PQSortedArray when you're testing it be default

• Verify to yourself that you shouldn't be able to access the object's internal state when debugging!

•To get around this, we have given you a function called validateInternalState(), which goes 

through the values in your underlying array to ensure that everything is in proper sorted order; 

else it throws an error.

•An additional debugging function we provide you is printDebugInfo(), which prints out the 

contents of your array, if you prefer a more hands-on approach to debugging.

•Both of these functions are public member functions, so you can call them in your student tests!



Part 1: PQ Sorted Array

More Debugging advice:

•Think about where good places to call validateInternalState() or printDebugInfo() might be!

•We also encourage that you use the debugger, as a way to easily see all of your data at 

runtime!

•Be very careful about your array indexing – out of bounds errors are common here! Perhaps 

a helper function verifying that an index is in bounds would be helpful

•Also be mindful of your use of delete[]. There should be a single delete[] for every 

invocation of a new keyword!



Questions about Part 1?

This xkcd isn’t actually relevant to the 

material, but as a proud Windows user, 

this hits a little too close to home.



Part 2: Client Tasks

•In this part of the assignment, you will be a client, 

or a user, of the pq class.

•With a pq, you can do some really powerful 

things! The code to the right sorts a vector using 

just enqueue! and dequeue()! Take a second to 

see why this works.

•Follow up question: Would this still work if your 

priority queue was not backed by a sorted array?



Part 2: Client Tasks

•You’ll be implementing the function Vector<DataPoint> topK(istream& stream, int k);



Part 2: Client Tasks

•You’ll be implementing the function Vector<DataPoint> topK(istream& stream, int k);

•An istream is a special abstraction that acts like a massive data structure. Streams allow 

you to move around massive amounts of memory because they don’t need to hold the data 

in your computer’s memory all at once – as you read data from the stream, the stream can 

read more data from its source – a file on disk for example!

• You won’t need to worry about the inner-workings of streams in this class, but it’s important to 

know that streams can store huge amounts of data.



Part 2: Client Tasks

•You’ll be implementing the function Vector<Datapoint> topK(istream& stream, int k);

•In the above function, your job is harness the power of the PQ in order to return 

a Vector<DataPoint> of the largest k elements in the stream.

•You must do so in O(k) space, meaning you can only store k elements in your priority 

queue at any given time.



Part 2: Client Tasks

•You will need to return the k largest elements in a Vector<DataPoint> sorted in largest to 

smallest priority order.

• Note that it’s very easy to get this backwards! pq.dequeue() returns the SMALLEST element in the 

queue, which should go at the END of the vector.

• The vector .reverse() method might be helpful here, but it's an O(N) operation. Can you do better?



Part 2: Client Tasks

Tips / Tricks

•Here’s how you can loop through every dataPoint in 

the stream ->

•Because you can only store k elements at a time, 

how can you use the priority queue to your 

advantage?

• When your pq has k elements in it, what’s special about 
the element returned by pq.peek()?

• If the stream contains fewer than k elements, simply 

return those elements in the Vector as you would if 

there were more than k elements in the stream.



Questions about Top-K?



Part 3: Heap PQ

•In this final part, you’ll be implementing a full priority queue using a binary min heap!



Part 3: Heap PQ

•In this final part, you’ll be implementing a full priority queue using a binary min heap!

But Trip, aren't there two things called the heap?



It's time for...

Imogen Heap's data disambiguation!



[Aside] Heap vs. Heap

•Indeed, the heap data structure is completely different from the heap region in memory.

•Moreover, the naming origins don't seem to be linked. A heap data structure was conceived 

and named in the 1960's, whereas the heap region in memory was named in the mid 

1970's.

•At a high level, both may have been named due to their behaviors. The heap data 

structure is optimized to provide a single element at request (in our case the dequeue()'d 

element), and the heap region in memory is frequently split into blocks that are allocated by 

requests made by the new keyword.

•In this sense, both concepts fundamentally provide something to a client on a per-request 

basis, like picking something off a heap of clothes, for example.



Back to the action!



Part 3: Heap PQ

•In this final part, you’ll be implementing a full priority queue using a binary min heap!

• As usual, we mean that the “highest priority” element is the element with the smallest value.

• In order to keep that property in your queue, you will be using a min heap like you’ve seen in 

lecture!

•Lecture 17 is an excellent source for all you’ll need to know about how to implement one of 

these heaps!

•Moreover, the non heap-related code you have may end up looking quite a bit like the code 

already written for you in PQSortedArray!

•Let’s go over a few key points of how a binary min heap works!



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

0 1 2 3 4

pq.enqueue(3);

5 7 10

Once again, I'm using 

integers instead of 

dataPoints for clarity



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

5 7 10

0 1 2 3 4

pq.enqueue(3);



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

0 1 2 3 4

pq.enqueue(3);

5 7 10 3



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

0 1 2 3 4

bubbleUp()

5 7 10 3



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

0 1 2 3 4

bubbleUp()

5 7 10 3

Parent at 
index 1



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

0 1 2 3 4

bubbleUp()

5 7 10 3

Parent at 
index 1



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent!

0 1 2 3 4

bubbleUp()

5 3 10 7

Parent at 
index 1



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

0 1 2 3 4

bubbleUp()

5 3 10 7

Index is now 1



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

5 3 10 7



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

5 3 10 7



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

5 3 10 7



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

5 3 10 7

^ this looks like a 

face, doesn’t it? :p



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

3 5 10 7

^ this looks like a 

face, doesn’t it? :p



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

3 5 10 7
Are we 

done?



Part 3: Heap PQ

•Let’s talk about enqueue()!

• To enqueue an element, first add it to the end of your pqueue!

• Next, bubble the element up (if a parent exists!) Compare it with its parent at index (i-1)/2. Swap if 

your element is less than its parent! Be sure to update your element's current index!

• Repeat this process until either your parent is smaller than you, or you’re at the top of the heap!

0 1 2 3 4

3 5 10 7
Done!



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

3 5 10 7

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

3 5 10 7

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

7 5 10 3

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

7 5 10 3

0 1 2 3 4

pq.size() = 3

Question: what is 
the PQ's internal 
capacity?



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

7 5 10 3

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

7 5 10 3

0 1 2 3 4

Check your 
understanding: why 
does swapping with 
the smaller child 
matter?



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

7 5 10 3

0 1 2 3 4

i*2 +1 i*2+2

Disclaimer: I’m just using ‘i’ to represent the index of the element we’re 

bubbling down; it has nothing to do with for loops ☺



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

7 5 10 3

0 1 2 3 4

i*2 +1 i*2+2

Our friend the face is back!



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

5 7 10 3

0 1 2 3 4

Our friend the face is back!



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children. Remember to update your index if you swap!

• Repeat this process until you are smaller than both of your children, or you have no children left!

5 7 10 3

0 1 2 3 4



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

• Repeat this process until you are smaller than both of your children, or you have no children left!

5 7 10 3

0 1 2 3 4

Are we 

done?



Part 3: Heap PQ

•Let’s talk about dequeue()!

• To start, swap your first and last elements and reduce your size by 1 (you could also just overwrite root!)

• Next, you want to bubble down the root element to its correct place. Compare the root element with 

its children, who live at indices (2 * i + 1) and (2 * i + 2), and swap your element with the smaller of the 

children.

• Repeat this process until you are smaller than both of your children, or you have no children left!

5 7 10 3

0 1 2 3 4

Done!



Part 3: Heap PQ

Helpful hints:

•Be aware that you're implementing a full class now! Although you will see overlap between 

this code and your PQSortedArray code, be mindful about what you copy over!

•Like the other parts of this assignment, you'll be using the DataPoint struct to represent 

elements.

•You will need to resize this priority queue if your active size exceeds capacity.

•The bubble functions can be implemented iteratively or recursively.



Part 3: Heap PQ

Helpful hints:

•I recommend writing a swap() method and bubbleUp() and bubbleDown() methods.

•dequeue() is a little more heap-y than enqueue(), so I’d recommend doing enqueue() first to 

get your feet wet!

•Don’t worry too much about ties – swapping identical elements effectively does nothing.

• Verify to yourself – why is this true?

•The validateInternalState() and printDebugInfo() methods can be life-savers here, but they 

aren't implemented. You'll have to write them yourself!



Part 3: Heap PQ

Helpful hints:

•Verify that the bubble functions work individually before trying to run robustness tests! It 

can be very difficult to locate bugs if they have multiple potential sources.

•Recall the debugging work you did in the first parts of this assignment to help you here – we 

strongly encourage that you use the debugger and/or the debug helper member functions to 

hammer out your bugs.

• Look to the warmups if you think you're getting weird memory errors!



Part 3: Heap PQ

One particular edge case I want to point out:

•In dequeue(), be cognizant of the fact that it’s possible to only have one child within the 

bounds of the array!

• In this case, the second child should be ignored. If you don’t check for this, your bubble down will 

read in a potentially bogus value that can cause wacky behavior in your program.



Questions about Part 3?



Part 4: Extra Demos!

•You don't have to do any extra coding here! Once your program is done, try running tests 

from the demos.cpp file to view representations of large real-world data sets that use your 

new data structure!

•It's an amazing graphical demo, so be sure to check it out after you've finished the 

assignment. It won't work before ;)



You did it!

Best of luck on this assignment!

Think about what you've just made – you can now create the data structures that we taught 

you about in the beginning of the class. Go you!


