
YEAH Hours A6 – Linked Lists

The pointers you know and love just got spookier!

Assignment logistics

• This assignment is due Thursday Nov 5th at 11:59

• The grace period expires Saturday Nov 7th at 11:59

• This might be the hardest assignment of the quarter, so be sure to

start early, and ask questions if you get stuck!

But first...

Happy Halloween!

I don't delete
the memory I

allocate

You're a
monster!

P.S. if you haven't seen the movie Coraline, I'd recommend it! It's very spooky!

CS107: Computer
Organization and
Systems

Let’s talk linked lists!

• A Linked List is simply a series of structs that are chained together

using pointers.

• The specific list node that you interact with varies from project to

project – sometimes you’ll be working with quite sophisticated linked

lists!

• One example of this is a doubly linked list, a list where nodes store pointers to

both the next and the previous nodes!

Before we start: questions about Linked Lists?

Look! A Linked Liszt!

What you’ll need to do:

1. Linked List warmups

• Linked lists are tricky. Here’s why!

2. The Labyrinth

• Using your pointer prowess, can you escape a twisty memory

labyrinth?

3. Sorting with Linked Lists!

• Can you implement sorting algorithms with a linked list?

Part I: Debugging Warmups

• In this part, you will use the simple test framework to detect memory leaks!

• The TRACK_ALLOCATIONS_OFaddendum in the ListNode struct definition will

automatically record the number of ListNodes that have been allocated and

deleted. If the numbers don’t match up at the end of the program, it’ll give you an

error!

Part I: Debugging Warmups

• You will be running some programs in warmup.cpp that contain various memory

errors relating to linked lists. In the process of observing them, you’ll learn that

some errors are quite noticeable, but others are virtually imperceptible without

some help. Spooky!

• In this part, you’ll see memory leaks, use-after-free errors, and segmentation

faults! Don’t worry, you’re ready to face them all!

• Pay attention to the descriptions of these errors in the handout – you’ll probably see

them later on in this assignment :p

What you’ll need to do:

1. Linked List warmups

• Linked lists are tricky. Here’s why!

2. The Labyrinth

• Using your pointer prowess, can you escape a twisty memory

labyrinth?

3. Sorting with Linked Lists!

• Can you implement sorting algorithms with a linked list?

The Labyrinth

• Imagine that you’re placed in

a labyrinth like the one on the

right. In order to escape, you

need to collect (up to) three

magical items: a book, a

wand and a potion.

• The labyrinth is constructed as

a linked list with four

connections, one in each of

the cardinal directions.

The Labyrinth

• More specifically, the labyrinth is a linked list of MazeCell structs. Each cell has four

MazeCell neighbors and a string that may or may not contain one of the

enchanted items!

The Labyrinth

You will need to write the following function:

bool isPathToFreedom(MazeCell *start, string path, Set<string> needed)

where start represents the initial MazeCell, path is a string consisting of
characters ‘N’, ‘S’, ‘E’, ‘W’, and needed is a set of magic items that you need
to escape the maze.

• For example, start could be any MazeCell *, path could look like
“NSWWENEWSNEWSENNSNES”, and needed could just contain “Wand”

• You will read a character at a time off the string and advance to the MazeCell
dictated by the character (‘N’ --> curr = cur->north)

• Along the way, if any cells contain magic items, pick them up!

The Labyrinth

Some notes about isPathToFreedom()

• Not all MazeCells have 4 valid pointers. Walls in this world are determined by
null pointers. If the following is true:

if (curr->north == nullptr) { … }

then there exists a wall above your current location. If a path tells you to move
into a wall, you should return false to signify that no escape was possible.

• You don’t necessarily need all 3 magical items to escape – just however many are in
‘needed’ at the very beginning. You might find that you only need 1 or 0 items!

• In a similar vein, you might find that you have all the items you need well before you’ve exhausted
the path – that’s okay – you can ignore remaining steps even if they’re invalid.

• It is possible that you encounter invalid characters in your path string. If you do,
throw an error to signify an invalid path.

The Labyrinth

A few more notes:

• Please use iteration and not recursion. Although your recursive gears might be

grinding, we don’t want to create tons of stack frames here.

• The path you are given may have you visiting the same cell twice. This is okay, and

you don’t need to detect it.

• Do not allocate any new MazeCell structs with the new keyword. You shouldn't need

to, but thought I should get that out there…

• The order of the items claimed doesn’t matter.

Questions about isPathToFreedom?

I don’t really get this one but it’s
topical, and we won’t ask any

questions that are too tricky ☺

Labyrinth part II: Escape!

• Now it’s time for you to escape from your own labyrinth! You’ll use the function

you’ve just written to escape from a labyrinth personalized to you! At the top of your

labyrinth.cpp file, enter your name as the value of the constant kYourName.

• Now scroll down to the final test case in the file. Set a breakpoint somewhere in this

test and fire up the debugger!

Labyrinth part II: Escape!

• When you fire up the debugger, you’ll find yourself with a debugger pane on the right that looks
something like this:

Doesn’t look like there are magical items at my starting point, rats! Looks like I’ll need to examine my
neighbors! In this case, there are walls all around, so I can only look north. Let’s click on it and see
what we can find.

Disclaimer: These were taken from my crappy windows
machine. Not sure if they’ll be 100% identical on mac (or
linux if you’re into that sort of thing)

Labyrinth part II: Escape!

• When you fire up the debugger, you’ll find yourself with a debugger pane on the right that looks
something like this:

Doesn’t look like there are magical items at my starting point, rats! Looks like I’ll need to examine my
neighbors! In this case, there are walls all around, so I can only look north. Let’s click on it and see
what we can find.

Disclaimer: These were taken from my crappy windows
machine. Not sure if they’ll be 100% identical on mac (or
linux if you’re into that sort of thing)

Labyrinth part II: Escape!

• Nothing here either? Double rats! From here, you can keep poking around the debugger. We

highly recommend drawing out a picture of your labyrinth. For every location you

examine, mark it in your picture, including any items that might be there! If you don’t

do this, remembering the correct path to find all 3 items will be very difficult.

This is the contents of our northern
neighbor! Watch out! It’s easy for this
window to get cluttered quickly!

Labyrinth part II: Escape!

• Eventually, you’ll find an item, huzzah! Once

you’ve found all 3, refer to your drawing,

and construct a path, from the start location,

of the series of steps needed to pick up all 3

items. Denote each step as a character, (‘N’ -

> North), and when you’re convinced you

have a correct path string, set the constant

kPathOutOfNormalMaze to your result

string. Then run in non-debug mode and

voila, you’re out of the maze!

Labyrinth part II: Escape!

Some notes about the question:

• If you change the kYourName constant, you’ll get a brand new maze, so keep that in
mind if you have to change the name!

• Beware that the labyrinths you are given may have cycles in them, and paths may
one be uni-directional! Check the addresses of the neighbor pointers to see if they
match an above neighbor! If they do, you might be going in a circle!

Not sure I’d call this a cycle, but you can see that the address

Is repeated in 2 places!

Questions about Labyrinth Escape?

escape
from

NNNSWESENW
ENSSNEWNEW
NSSNEWNSNEN

What you’ll need to do:

1. Linked List warmups

• Linked lists are tricky. Here’s why!

2. The Labyrinth

• Using your pointer prowess, can you escape a twisty memory

labyrinth?

3. Sorting with Linked Lists!

• Can you implement sorting algorithms with a linked list?

Part III: Sorting with Linked Lists

• It’s time for your big challenge! For this final part, you are tasked with implementing

both runsort and quicksort using a linked list instead of an array!

• Let's first talk about some helper functions that you should write first:

Part III: Sorting with Linked Lists

• We suggest writing the 4 following helper functions:
• (Seriously, without these, you won't really be able to test your code at all)

1. void printList(ListNode* front)
• Prints the contents of the LL to the console

2. void deallocateList(ListNode* front)
• delete an entire linked list

3. ListNode* createList(Vector<int> values)
• Creates and returns the front of a LL created from the given vector

4. bool areEquivalent(ListNode* front, Vector<int> v)
• Returns whether the given LL and the vector V have the same sequential values

Part III: Sorting with Linked Lists

• We suggest writing the 4 following helper functions:
• (Seriously, without these, you won't really be able to test your code at all)

1. void printList(ListNode* front)
• Prints the contents of the LL to the console

2. void deallocateList(ListNode* front)
• delete an entire linked list

3. ListNode* createList(Vector<int> values)
• Creates and returns the front of a LL created from the given vector

4. bool areEquivalent(ListNode* front, Vector<int> v)
• Returns whether the given LL and the vector V have the same sequential values

Questions about any of
these?

RunSort case study

• Runsort isn't an algorithm you've seen before in this class, so let's talk about it!

RunSort case study

• Runsort isn't an algorithm you've seen before in this class, so let's talk about it!

• RunSort has 2 key parts to it:

• 1: Finding a run: a "run" is a subsection of the input list, from the front, that is sorted. Given an arbitrary list,

you should be able to return a pointer to the head of the first "run" in the list, even if that run is simply a single

element.

RunSort case study

• Runsort isn't an algorithm you've seen before in this class, so let's talk about it!

• RunSort has 2 key parts to it:

• 1: Finding a run: a "run" is a subsection of the input list, from the front, that is sorted. Given an arbitrary list,

you should be able to return a pointer to the head of the first "run" in the list, even if that run is simply a single

element.

• 2: Merging this run: When this run is found, merge it with a sorted list of merged runs you've been building

up (starting as an empty list!)

RunSort case study

• Can you identify the runs in each list?

5 7 0 8 2

-4 -3 0 8 2

5 -3 0 8 2

RunSort case study

• Can you identify the runs in each list?

5 7 0 8 2

-4 -3 0 8 2

5 -3 0 8 2

RunSort Case Study

• Let’s say that you want to perform RunSort on this here list.

5 -3 0 8 2Input list

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

5 -3 0 8 2Input list

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

5 -3 0 8 2Input list

Sorted list

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

5 -3 0 8 2Input list

Sorted list

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

5 -3 0 8 2Input list

Sorted list

Run!

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

5 -3 0 8 2Input list

Sorted list

Run!
Current run

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

5 -3 0 8 2Input list

Sorted list

Run!
Current run

Merge!

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

-3 0 8 2Input list

Sorted list
5

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

-3 0 8 2Input list

Sorted list
5

REPEAT

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

-3 0 8 2Input list

Sorted list
5

Run!

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

-3 0 8 2Input list

Sorted list
5

Run!Current run

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

-3 0 8 2Input list

Sorted list
5

Run!Current run
Merge!

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

2Input list

Sorted list
-3 0 5 8

REPEAT

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

2Input list

Sorted list
-3 0 5 8

Run!

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

2Input list

Sorted list
-3 0 5 8

Run!
Current run

X

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

2Input list

Sorted list
-3 0 5 8

Run!
Current run

X

Merge!

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

8

Input list

Sorted list
-3 0 2 5

X

MergeSort Case Study

• Step 1: Make a pointer to a "sorted" list where you will store elements once they're

sorted.

• Step 2: Repeatedly pull off the first run from the 'input' list and merge this run with

the 'sorted' list.

8

Input list

Sorted list
-3 0 2 5

X Done!

Part III: Sorting with Linked Lists

Some tips / tricks for RunSort

• You’re only given a function header for RunSort. If you’re confused about how to start this one,
looking at Multiway Merge merge() code would be a good idea. The merging idea is the same
because your two lists are always sorted.

• We recommend writing two helper functions: splitRun(), which identifies and breaks off a 'run'
from the front of a LL, and merge(), which merges two sorted LL's.

• Splitting a LL is very easy – simply set an internal node's 'next' value to nullptr, and you have a split! Make sure you save a
handle to the node you were pointing to, though...

• We don’t provide any meaningful functionality tests for this part. It’s up to you to write a
barrage of tests to verify the robustness of your sort. Once again, listToVector() will be helpful
here in order to compare your sorting algorithm to the built-in vector.sort() algorithm.

• This goes without saying, but decomposition is crucial here. You need to be able to test your
merge and splitRun routines separately in order for this assignment to be manageable. If you
don’t test incrementally, it will be very hard to tell where your bugs are coming from!

Part III: Sorting with Linked Lists

Things to watch out for:

• The entire runSort() routine should be iterative. There should be no recursion used in

this sort.

• Because of recursion’sstack-frame-intensive nature, we don’t want you to blow out your stack on a simple sort!

• You are not allowed to add or remove any ListNodes. The sorting must be done by rewiring

nodes only! You may not modify the “data” field in the ListNode.

• This might go without saying, but you are not allowed to use data structures like Vectors or

Stacks in your implementation.

• Vectors may be very very very helpful for debugging, however!

• Segmentation faults. I’ll just leave this here…

Questions about runSort?

In case anyone wanted to thank_you->next

QuickSort Case Study

• Let’s talk about Quicksort!

QuickSort Case Study

• Step 1: Choose a pivot. The pivot will be one element in the list that will act as your

dividing element, splitting the list into two (three if you count the pivot separately)

lists. Choosing a good pivot can be tricky, but for this assignment, you simply have

to pick the first element in the list to be your pivot.

5 0 -3 8 2

QuickSort Case Study

• Step 1: Choose a pivot. The pivot will be one element in the list that will act as your

dividing element, splitting the list into two (three if you count the pivot separately)

lists. Choosing a good pivot can be tricky, but for this assignment, you simply have

to pick the first element in the list to be your pivot.

5 0 -3 8 2

How pivotal!

QuickSort Case Study

• Step 1: Choose a pivot. The pivot will be one element in the list that will act as your

dividing element, splitting the list into two (three if you count the pivot separately)

lists. Choosing a good pivot can be tricky, but for this assignment, you simply have

to pick the first element in the list to be your pivot.

5 0 -3 8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5 0 -3 8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

0 -3 8 2

RightList

Middle

LeftList

5

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0

-3 8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0 -3

8 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0 -3

8

2

RightList

Middle

LeftList

QuickSort Case Study

• Step 1.5: With your pivot in hand, do a linear scan of the list, assigning elements to

the correct sublist depending on their relation to the pivot (less, greater, equal)

5

0 -3

8

2

RightList

Middle

LeftList ho hum, we’ve chosen a shoddy pivot.
Want to learn how to choose a great
pivot while not burning the efficiency
books? Take CS161!

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

The right and the middle are already at size 1!

RightList

Middle

LeftList

0 -3 2

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

How pivotal!

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

QuickSort Case Study

• Step 2: Similar to in MergeSort, you’re going to recursively QuickSort the left and

right sublists. No need to sort the middle, because guess what, it’s already sorted!

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

#1

#2

#3

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

RightList

Middle

LeftList

0

-3

2

#1

#2

#3

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0 -3 2

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

RightList

Middle

LeftList

0-3 2

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

5

8

RightList

Middle

LeftList

0-3 2 This is sorted now!

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

5

8

RightList

Middle

LeftList

0-3 2

#2

#1

#3

QuickSort Case Study

• Step 3: Not too dissimilarly to MergeSort, you’re then going to take the 3 lists

you’ve recursively made and join them, Left -> Middle -> Right

5 80-3 2
Done!

Part III: Sorting with Linked Lists

Some tips / tricks about QuickSort

• The partition routine is quite tricky – make sure you draw out the steps before

implementing it!

• The merge concept is very simple – just rewire the end of LeftList to point to the

MiddleList, and rewire the end of MiddleList to point to RightList.

• Beware that these lists can be empty at merge time – this will cause problems in your code!!

• Do not call QuickSort on the middle list! It’s just a waste of time, and it can do

strange things if not handled / avoided.

Part III: Sorting with Linked Lists

Some things to note:

• Everything that applied to the last problem applies here: no new nodes, no

changing the data field, and no data structures.

• There are still no correctness test cases, so be sure you write your own.

• Your partition and join routines must be iterative. You should call your QuickSort

function recursively, however, and you probably will.

Questions about QuickSort?

Food for thought: can you think of a
comparison-based sorting algorithm that
runs in time faster than O(nlog(n))? Extra
credit if you can!

That's it!

You're now ready to take on assignment 6!
Hope you have a spooky Halloween!

My dog, Buster, dressed as
sashimi for a past Halloween.
He didn't like it.

