YEAH A4

Recursive Backtracking



Logistics

e This assignment is due next Friday, 2/12 at the start of class.



Logistics

e This assignment is due next Friday, 2/12 at the start of class.
e Once again, you are allowed to work in pairs on this assignment. We think this
one’s pretty tricky, so be sure to start early!



Part 1: Warmups

We have two debugging warmups for you to complete before the coding portions
of the assignment!



Part 1: Warmups

We have two debugging warmups for you to complete before the coding portions
of the assignment!

e |n the first one, you’ll be examining The Towers of Hanoi, a famous recursive
problem. You’ll be responsible for stepping through the recursive function and
reporting back various info to us. Here are the helpful steps in the debugger:

e Stepping over a recursive call can be helpful when thinking holistically. A recursive call is simply a
“magic” black box that completely handles the smaller subproblem.

e Steppinginto a recursive call allows you to trace the nitty-gritty details of moving from an outer
recursive call to the inner call.

e Stepping out of a recursive call allows you to follow along with the action when backtracking from

an inner recursive call to the outer one.



Part 1: Warmups

We have two debugging warmups for you to complete before the coding portions

of the assignment!

e Inthe second warmup, you’ll be examining a buggy implementation of code
that finds permutations. It’ll be your job to figure out the little error that causes
the bug, and after, you’ll need to reflect as to why the that bug was so

catastrophic.



Part 1: Warmups

We have two debugging warmups for you to complete before the coding portions

of the assignment!

e Inthe second warmup, you’ll be examining a buggy implementation of code
that finds permutations. It’ll be your job to figure out the little error that causes
the bug, and after, you’ll need to reflect as to why the that bug was so

catastrophic.
We designed these warmups specifically because we’ve seen these error come up many times

in the past! If you have a good understanding of why the permutations code doesn’t work, you’ll
have a much better understanding of recursion / backtracking!

(@)



Let's hop into the code!

Poster for the 2015 film
“Backtrack.” Critics gave it a
paltry 30% on Rotten Tomatoes,
citing “not enough recursion.”




Part 2: Doctors Without Orders

e The more programming knowledge we know, the more we can use CS to solve
real life problem!



Part 2: Doctors Without Orders

e The more programming knowledge we know, the more we can use CS to solve
real life problem!
e A growing application of CS is in the field of Healthcare.

Stanford Al in
Healthcare




Part 2: Doctors Without Orders

e The more programming knowledge we know, the more we can use CS to solve
real life problem!

e A growing application of CS is in the field of Healthcare.
e |et’s utilize the recursion skill we have practiced so far to solve a cool problem!

Stanford Al in
Healthcare




Part 2: Doctors Without Orders

e We want to see if there is a way to match the patients with the doctors such
that all of the patients are taken care of.



Part 2: Doctors Without Orders

e We want to see if there is a way to match the patients with the doctors such
that all of the patients are taken care of.
e Each doctor has a maximum number of hours they can work for.

0 Map<string, int> doctors;



Part 2: Doctors Without Orders

e We want to see if there is a way to match the patients with the doctors such
that all of the patients are taken care of.

e Each doctor has a maximum number of hours they can work for.
0 Map<string, int> doctors;

e Each patient has a number of hours they need to be seen for.
0 Map<string, int> patients;



Part 2: Doctors Without Orders

e We want to see if there is a way to match the patients with the doctors such
that all of the patients are taken care of.
e Each doctor has a maximum number of hours they can work for.
0 Map<string, int> doctors;
e Each patient has a number of hours they need to be seen for.
0 Map<string, int> patients;

e |[f a valid matching exist, we also want to keep track of such a matching.
0 Map<string, Set<string>> schedule;



Part 2: Doctors Without Orders

e We want to see if there is a way to match the patients with the doctors such
that all of the patients are taken care of.
e Each doctor has a maximum number of hours they can work for.
0 Map<string, int> doctors;
e Each patient has a number of hours they need to be seen for.
0 Map<string, int> patients;

e |[f a valid matching exist, we also want to keep track of such a matching.
0 Map<string, Set<string>> schedule;

Name of
doctor




Part 2: Doctors Without Orders

e We want to see if there is a way to match the patients with the doctors such
that all of the patients are taken care of.
e Each doctor has a maximum number of hours they can work for.
0 Map<string, int> doctors;
e Each patient has a number of hours they need to be seen for.
0 Map<string, int> patients;

e |[f a valid matching exist, we also want to keep track of such a matching.
0 Map<string, Set<string>> schedule;

|

Name of List of
doctor patients
matched




Part 2: Doctors Without Orders

e Let’'s walk through a quick example (low animation budget ahead!)



Strategy 1: Grab-n-Go!

10




Strategy 1: Grab-n-Go!

10




Strategy 1: Grab-n-Go!

10




Strategy 1: Grab-n-Go!

10




Strategy 1: Grab-n-Go!

10




Strategy 1: Grab-n-Go!

10




Strategy 1: Grab-n-Go!

10

/




Strategy 1: Grab-n-Go!

10

\[/




Strategy 1: Grab-n-Go!

10

A

BNE




Strategy 1: Grab-n-Go!

Surprise! That’s didn’t work!

10

A

BNE




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

10




Strategy 2: Greedy

Surprise (this time less
sarcastically)!

10




Strategy 2: Greedy i ) @

Surprise (this time less
sarcastically)!

Note: This is provable! Take 10
CS 161to find out 3)




“Strategy” 3: Oracle

There is indeed a solution
here.

10




Part 2: Doctors Without Orders

e Some notes:
o Each patient can only be assigned to ONE doctor.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some notes:

o Each patient can only be assigned to ONE doctor.
o Doctors don’t have to use up all of their hours.
m Infact, it is totally fine to have a doctor not matched with any patient.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some notes:

o Each patient can only be assigned to ONE doctor.
o Doctors don’t have to use up all of their hours.
m Infact, it is totally fine to have a doctor not matched with any patient.
o  We don’t care what “schedule” contains if not matching is possible.
m Although we imagine that you don’t have to explicitly address this case.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:
o  Start simple! We can ignore schedule at first.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

o  Start simple! We can ignore schedule at first.
o There are no known greedy approach that works efficiently.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

o  Start simple! We can ignore schedule at first.
o There are no known greedy approach that works efficiently.
o There are two possible approaches when making a “choice”:

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

o  Start simple! We can ignore schedule at first.
o There are no known greedy approach that works efficiently.
o There are two possible approaches when making a “choice”:
m 1. Go one doctor at a time, deciding which subset of patients that doctor should see.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

o  Start simple! We can ignore schedule at first.

o There are no known greedy approach that works efficiently.

o There are two possible approaches when making a “choice”:
m 1. Go one doctor at a time, deciding which subset of patients that doctor should see.
m 2. Go one patient at a time, deciding which doctor should see them.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:
o  Start simple! We can ignore schedule at first.
o There are no known greedy approach that works efficiently.
o There are two possible approaches when making a “choice”:
m 1. Go one doctor at a time, deciding which subset of patients that doctor should see.
m 2. Go one patient at a time, deciding which doctor should see them.
m Take some time to decide which approach is better!

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

o  Start simple! We can ignore schedule at first.

o There are no known greedy approach that works efficiently.

o There are two possible approaches when making a “choice”:
m 1. Go one doctor at a time, deciding which subset of patients that doctor should see.
m 2. Go one patient at a time, deciding which doctor should see them.
m Take some time to decide which approach is better!

o map.firstKey () can give you a “random” key from the map.

bool canAllPatientsBeSeen(const Map<string, int>& doctors,
const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

(@)

(@)

(@)

Start simple! We can ignore schedule at first.

There are no known greedy approach that works efficiently.

There are two possible approaches when making a “choice”:
m 1. Go one doctor at a time, deciding which subset of patients that doctor should see.
m 2. Go one patient at a time, deciding which doctor should see them.
m Take some time to decide which approach is better!

map . firstKey () can give you a “random” key from the map.

Not the first priority, but make sure your code is efficient (there is a stress test).

bool canAllPatientsBeSeen(const Map<string, int>& doctors,

const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Part 2: Doctors Without Orders

e Some implementation thoughts:

(@)

(@)

(@)

Start simple! We can ignore schedule at first.
There are no known greedy approach that works efficiently.
There are two possible approaches when making a “choice”:
m 1. Go one doctor at a time, deciding which subset of patients that doctor should see.
m 2. Go one patient at a time, deciding which doctor should see them.
m Take some time to decide which approach is better!
map . firstKey () can give you a “random” key from the map.
Not the first priority, but make sure your code is efficient (there is a stress test).
m Don’t make repeated schedules.
m Don’t go down impossible paths (like intentionally ignoring a patient).

bool canAllPatientsBeSeen(const Map<string, int>& doctors,

const Map<string, int>& patients,
Map<string, Set<string>>& schedule);



Questions?



Part 3: Disaster Planning

e Time for our next real life application!



Part 3: Disaster Planning

e Time for our next real life application!
e A region wants to be disaster-ready (we will define this more formally later).



Part 3: Disaster Planning

e Time for our next real life application!
e A region wants to be disaster-ready (we will define this more formally later).
e A few limitations:



Part 3: Disaster Planning

e Time for our next real life application!
e A region wants to be disaster-ready (we will define this more formally later).

e A few limitations:

o Limited supplies: We can’t afford to stockpile all cities, so we can only pick a strict subset of the
vulnerable cities to cover.



Part 3: Disaster Planning

e Time for our next real life application!
e A region wants to be disaster-ready (we will define this more formally later).

e A few limitations:
o Limited supplies: We can’t afford to stockpile all cities, so we can only pick a strict subset of the
vulnerable cities to cover.
o Need for proximity: A city cannot react to a disaster fast enough if the closest emergency
supply is too far away.



Part 3: Disaster Planning

e In this last part of the assignment, your job is to find a way to make a region
disaster-ready.



Part 3: Disaster Planning

In this last part of the assignment, your job is to find a way to make a region

disaster-ready.
e Aregion is represented by a set of cities, and each pair of cities can be

optionally connected by a road.
0 Map<string, Set<string>>& roadNetwork;

]

Name of List of
city cities it is
connect to




Part 3: Disaster Planning

e In this last part of the assignment, your job is to find a way to make a region
disaster-ready.
e Aregion is represented by a set of cities, and each pair of cities can be

optionally connected by a road.
0 Map<string, Set<string>>& roadNetwork;

e There are only a limited number of cities we can directly supply.

0 int numCities;



Part 3: Disaster Planning

e In this last part of the assignment, your job is to find a way to make a region
disaster-ready.
e Aregion is represented by a set of cities, and each pair of cities can be

optionally connected by a road.
0 Map<string, Set<string>>& roadNetwork;

e There are only a limited number of cities we can directly supply.

0 int numCities;
e We would like to know, if possible, what cities should be supplied so, for every
city in the region, it is either directly supplied, or adjacent to a city that is
directly supplied.

O Set<string> supplylocations;



Part 3: Disaster Planning

e Let’'s go over that again -- what does it mean to cover a city?



Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

Say we have 5 Cities, A,
@ B, X, D and C!



Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

Suppose we cover city




Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

Suppose we cover city
e A..




Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

City A is now stocked up
and safe, but because
city A is neighbors with
city X, city X is also
covered due to its
proximity!




Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

City A is now stocked up
and safe, but because
city A is neighbors with
city X, city X is also
covered due to its
proximity!




Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

Question, what’s the
minimum number of
cities we need to supply
to “cover” all cities in this
region?



Part 3: Disaster Planning

e |et’s go over that again -- what does it mean to cover a city?

One! City X!




Part 3: Disaster Planning

e Let’s go over that again -- what does it mean to cover a city?

Remember that cities
can be covered by their
neighbors! This will
come in handy in this
assignment!




Part 3: Disaster Planning

bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,
int numCities,

Set<string>& supplylocations);

Let’s go over the algorithm to solve this problem:



Part 3: Disaster Planning

bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,
int numCities,

Set<string>& supplylocations);
Let’s go over the algorithm to solve this problem:

1. Pick a city that has not yet been covered. (hint: are you given a data structure
that represents uncovered cities, or will you have to make one?)



Part 3: Disaster Planning

bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,
int numCities,

Set<string>& supplylocations);

Let’s go over the algorithm to solve this problem:

1.

Pick a city that has not yet been covered. (hint: are you given a data structure
that represents uncovered cities, or will you have to make one?)

For each way that it can be covered (i.e. covering the city or ANY of its
neighbors), try covering that option, and then see whether the result of
covering it returns true. If so, then covering that option was the correct choice,
and you can return true. If all choices return false, then there’s no way to cover
that city, meaning that you cannot cover all cities -- you should return false.



Part 3: Disaster Planning

bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,
int numCities,

Set<string>& supplylocations);

Let’s go over the algorithm to solve this problem:

1.

Pick a city that has not yet been covered. (hint: are you given a data structure
that represents uncovered cities, or will you have to make one?)

For each way that it can be covered (i.e. covering the city or ANY of its
neighbors), try covering that option, and then see whether the result of
covering it returns true. If so, then covering that option was the correct choice,
and you can return true. If all choices return false, then there’s no way to cover
that city, meaning that you cannot cover all cities -- you should return false.



Part 3: Disaster Planning

Let’s see some brief examples of this:

) (t
(HHC)HC)—Hs
(Hs) (Ho



Part 3: Disaster Planning

Let’s see some brief examples of this:
Let’s pick an uncovered

D@
(HHC)HC)—Hs
(Hs) (Ho



Part 3: Disaster Planning

Let’s see some brief examples of this:
Let’s pick an uncovered

@ @ city, say, H1




Part 3: Disaster Planning

Let’s see some brief examples of this:

How many ways can

@ @ we cover H1?




Part 3: Disaster Planning

Let’s see some brief examples of this:

Only 2 ways: either by
covering H1 or by
covering C1




Part 3: Disaster Planning

Let’s see some brief examples of this:

Let’s say that we first

@ @ try covering C1:




Part 3: Disaster Planning

Let’s see some brief examples of this:

Let’s say that we first
try covering C1:




Part 3: Disaster Planning

Let’s see some brief examples of this:

Let’s say that we first
try covering C1:

G atin @
) (Hy



Part 3: Disaster Planning

Let’s see some brief examples of this:

G atin @
) (Hy

Look at this -- by
covering C1, we ended
up covering 4 other
locations by proximity!



Part 3: Disaster Planning

Let’s see some brief examples of this:

G atin @
) (Hy

Look at this -- by
covering C1, we ended
up covering 4 other
locations by proximity!

In technical terms, by
covering some city C,
you can remove
roadNetwork[C] (all of
C’s neighbors) from the
set of uncovered cities,
including C



Part 3: Disaster Planning

Let’s see some brief examples of this:

G atin @
) (Hy

Look at this -- by
covering C1, we ended
up covering 4 other
locations by proximity!

In technical terms, by
covering some city C,
you can remove
roadNetwork[C] (all of
C’s neighbors) from the
set of uncovered cities,
including C

Be sure to account for
these changes in every
recursive call!



Part 3: Disaster Planning

Let’s see some brief examples of this:

What'’s the next optimal
choice to cover all
cities?

G atin @
) (Hy



Part 3: Disaster Planning

Let’s see some brief examples of this:

G atin @
) (Hy

What'’s the next optimal
choice to cover all
cities?

C2! Even though it’s
already “covered,” it is
worth stockpiling the
city because it will
cover the last 3
uncovered cities!



Part 3: Disaster Planning

Let’s see some brief examples of this:

What'’s the next optimal
choice to cover all
cities?

C2! Even though it’s
already “covered,” it is
worth stockpiling the

city because it will
cover the last 3
uncovered cities!

Your computer won’t

be able to analyze the
diagrams, so it needs
to try all options :p



Part 3: Disaster Planning

e Some tips/tricks:



Part 3: Disaster Planning

e Some tips/tricks:
o The road network is bidirectional, and roadNetwork can accurately represent that.



Part 3: Disaster Planning

e Some tips/tricks:
o The road network is bidirectional, and roadNetwork can accurately represent that.
o Do not take the “greedy” approach here, which would be trying to cover cities with the most
neighbors first. This won’t always work, trust us!



Part 3: Disaster Planning

e Some tips/tricks:
o The road network is bidirectional, and roadNetwork can accurately represent that.
o Do not take the “greedy” approach here, which would be trying to cover cities with the most
neighbors first. This won’t always work, trust us!
o Think about your parameters, roadNetwork, numCities, and supplyLocations. How
do these change for any given recursive call? How will you keep track of cities that are covered
/ uncovered?



Part 3: Disaster Planning

Some tips/tricks:

(@)

(@)

The road network is bidirectional, and roadNetwork can accurately represent that.

Do not take the “greedy” approach here, which would be trying to cover cities with the most
neighbors first. This won’t always work, trust us!

Think about your parameters, roadNetwork, numCities, and supplyLocations. How
do these change for any given recursive call? How will you keep track of cities that are covered
/ uncovered?

In a similar vein, don’t modify roadNetwork. We strongly encourage that you add parameters
via a wrapper function, but if you change roadNetwork, all bets are off WRT your
functionality.



Part 3: Disaster Planning

Some tips/tricks:

(@)

(@)

The road network is bidirectional, and roadNetwork can accurately represent that.

Do not take the “greedy” approach here, which would be trying to cover cities with the most
neighbors first. This won’t always work, trust us!

Think about your parameters, roadNetwork, numCities, and supplyLocations. How
do these change for any given recursive call? How will you keep track of cities that are covered
/ uncovered?

In a similar vein, don’t modify roadNetwork. We strongly encourage that you add parameters
via a wrapper function, but if you change roadNetwork, all bets are off WRT your
functionality.

numCities can be zero, but you should raise an error () if it's negative.



Part 3: Disaster Planning

Some tips/tricks:

(@)

(@)

The road network is bidirectional, and roadNetwork can accurately represent that.

Do not take the “greedy” approach here, which would be trying to cover cities with the most
neighbors first. This won’t always work, trust us!

Think about your parameters, roadNetwork, numCities, and supplyLocations. How
do these change for any given recursive call? How will you keep track of cities that are covered
/ uncovered?

In a similar vein, don’t modify roadNetwork. We strongly encourage that you add parameters
via a wrapper function, but if you change roadNetwork, all bets are off WRT your
functionality.

numCities can be zero, but you should raise an error () if it's negative.

Keith recommends getting the return statement correct before filling the outparameter
supplyLocations. Once you’ve gotten the functionality correct that determines whether a
region can be supplied, then you can start working on the outparameter.



bool canBeMadeDisasterReady(const Map<string, Set<string>>& roadNetwork,

int numCities,

Set<string>& supplylLocations);

Questions?




