

Big-O Notation

Apply to Section Lead!

Don’t just take my word for it...

Estimating Quantities

These two square plates are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second square?

10m 10m

20m20m

Mass: 100kg

Take 30 seconds to
formulate a hypothesis, but
don’t post your answer

in chat just yet.

Take 30 seconds to
formulate a hypothesis, but
don’t post your answer

in chat just yet.

These two square plates are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second square?

10m 10m

20m20m

Mass: 100kg

Now, post your
best guesses in

chat. 😃

Now, post your
best guesses in

chat. 😃

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two cubes are made of the same material.

What’s your best guess for the mass of the second cube?

10m

Mass: 100kg

20m

These two statues are made of the same material.

What’s your best guess for the mass of the second statue?

Mass: 1,000kg
3

0
m

1
0
m

Knowing the rate at which some quantity
scales allows you to predict its value in the

future, even if you don’t have an exact
formula.

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

This just says that these
quantities grow at the same

relative rates. It does not
say that they’re equal!

This just says that these
quantities grow at the same

relative rates. It does not
say that they’re equal!

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).
● A cube of side length r has volume O(r3).
● A sphere of radius r has volume O(r3).
● A sphere of radius r has surface area O(r2).
● A cube of side length r has surface area O(r2).

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Take 45 seconds to
formulate a hypothesis,
but don’t post your
answer in chat just

yet. 😃

Take 45 seconds to
formulate a hypothesis,
but don’t post your
answer in chat just

yet. 😃

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Now, post your
best guesses in

chat. 😃

Now, post your
best guesses in

chat. 😃

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

A Messier Example: Manufacturing

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = an + bCost(n) = an + b

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

We can fit a line with two
points, so we can make
good future predictions
based on knowledge of

two quantities.

We can fit a line with two
points, so we can make
good future predictions
based on knowledge of

two quantities.

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

n 2n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

If we know the cost of
producing n units for a
“large” value of n, we’d

expect the cost of producing
2n units to be roughly double

that amount.

If we know the cost of
producing n units for a
“large” value of n, we’d

expect the cost of producing
2n units to be roughly double

that amount.

n 2n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

n 2n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)Cost(n) = O(n)

If we know the cost of
producing n units for a

“small” value of n, we can’t
make good predictions about

the cost of producing 2n
units.

If we know the cost of
producing n units for a

“small” value of n, we can’t
make good predictions about

the cost of producing 2n
units.

n 2n

Nuances of Big-O Notation

● Big-O notation is designed to capture the
rate at which a quantity grows.

● It does not capture information about
● leading coefficients: the area of a square of

side length r and a circle of radius r are each
O(r2).

● lower-order terms: the functions n, 5n, and
137n + 42 are all O(n).

● However, it’s still a powerful tool for
predicting behavior.

What does big-O notation have to
do with computer science?

Time-Out for Announcements!

Assignment 4

● Assignment 3 was due today at 11:30AM Pacific.
● Grace period ends Sunday at 11:30AM Pacific.

● Assignment 4 (Recursion to the Rescue!) goes
out today. It’s due next Friday.
● Get a better feel for how to debug recursive code!
● See how to put recursion to good use in a pair of

powerful, practical programs.
● As always, feel free to ask for help when you need

it! Ping us on EdStem, stop by the LaIR, call into
our office hours, or email your section leader!

Midterm Exam Logistics

● Our first midterm exam runs from 12:30PM Friday, February
12th to 12:30PM Sunday, February 14th, Pacific time.

● It’s a take-home coding exam. It will be designed to take three
hours to complete, though you’ll have the full 48-hour window
to complete it.

● We’ll post starter files and instructions along the lines of what
we’ve done for the programming assignments.

● Topic coverage is as follows:
● Primary focus is on material and concepts from Lectures 00 – 09 and

Assignments 0 – 3.
● Secondary focus is on material and concepts from Lectures 10 – 13

and Assignment 4.
● More information can be found online in the “Midterm

Information” handout. We’ll talk more about the exam over the
next week in lecture, too!

fg
(The Unix command to resume a program that was paused)

What does big-O notation have to
do with computer science?

Fundamental Question:

How do we measure efficiency?

One Idea: Runtime

Why Runtime Isn’t Enough

● Measuring wall-clock runtime is less than
ideal, since
● it depends on what computer you’re using,
● what else is running on that computer,
● etc.

● Worse, individual runtimes can’t
predict future runtimes.

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

Is this useful?

What does that
tell us?

Is this useful?

What does that
tell us?

One possible answer: 3n + 4.
More useful answer: O(n).

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1
Doubling the size of the

input roughly doubles the
runtime.

If we get some data points,
we can extrapolate

runtimes to good precision.

Doubling the size of the
input roughly doubles the

runtime.

If we get some data points,
we can extrapolate

runtimes to good precision.

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 do a fixed amount of work;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 do a fixed amount of work;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {

 do O(n) units of work;

 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {

 do O(n) units of work;

 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {

 do O(n2) units of work;

}

Answer: O(n2).

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

If we time this code on
input n, how much longer
will it take to run on the

input 2n?

If we time this code on
input n, how much longer
will it take to run on the

input 2n?

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

Take 45 seconds to
formulate hypotheses,
but don’t post your
answer in chat just

yet. 😃

Take 45 seconds to
formulate hypotheses,
but don’t post your
answer in chat just

yet. 😃

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Take 45 seconds to
formulate hypotheses,
but don’t post your
answer in chat just

yet. 😃

Take 45 seconds to
formulate hypotheses,
but don’t post your
answer in chat just

yet. 😃

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Now, post your
best guesses in

chat. 😃

Now, post your
best guesses in

chat. 😃

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 do one unit of work;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 do one unit of work;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do 5n units of work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do 5n units of work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Any linear
function is O(n).

The leading
coefficient is

ignored.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do O(n) work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Any linear
function is O(n).

The leading
coefficient is

ignored.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do O(n) work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

 do 2n * O(n) work;

}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

 do 2n * O(n) work;

}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

As before, big-O
ignores any leading

coefficients.

As before, big-O
ignores any leading

coefficients.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

 do O(n2) work;

}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

As before, big-O
ignores any leading

coefficients.

As before, big-O
ignores any leading

coefficients.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 do one unit of work;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 do one unit of work;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do 3n units of work;

 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 do one unit of work;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 do one unit of work;
 }
}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 do 8 units of work;

}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 do 8 units of work;

}

O(n2)O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 do 8 units of work;

}

O(n2)O(n2)Any linear
function is O(n).
The y-intercept
doesn’t matter.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

}

O(n2)O(n2)Any linear
function is O(n).
The y-intercept
doesn’t matter.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

O(n)O(n)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)O(n2)

O(n)O(n)

Recap from Today

● Big-O notation captures the rate at which
a quantity grows or scales as the input
size increases.

● Big-O notation ignores low-order terms
and constant factors.

● “When in doubt, work inside out!” When
you see loops, work from the inside out
to determine the big-O complexity.

Your Action Items

● Read Chapter 10.1 – 10.2.
● It’s all about big-O and efficiency, and it’s a

great complement to what we covered today.
● Start Assignment 4.

● If you want to follow our suggested
timetable, aim to complete the debugging
exercise and Doctors Without Orders by
Monday.

Next Time

● Sorting Algorithms
● How do we get things in order?

● Designing Better Algorithms
● Using predictions from big-O notation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86

