

Where to Go from Here

Taking Stock: Where Are We?

Goals for this Course

● Learn how to model and solve
complex problems with computers.

● To that end:
● Explore common abstractions for

representing problems.
● Harness recursion and understand how to

think about problems recursively.
● Quantitatively analyze different approaches

for solving problems.

What We’ve Covered

Strings

Streams

Recursive Problem-Solving

Stacks

Queues

Vectors

Maps

Sets

Lexicons

What We’ve Covered

Recursive Graphics

Recursive Enumeration

Recursive Backtracking

Big-O Notation

Sorting Algorithms

Class Design

Pointers and Memory

Constructors and Destructors

What We’ve Covered

Dynamic Arrays

Chained Hashing

Linear Probing

Robin Hood Hashing

Linked Lists

Binary Search Trees

Huffman Coding

Graphs

You didn’t just learn a list of concepts.

You learned to make those concepts shine.

 Assignment 1: Strings, Streams, and Recursion

 Assignment 2: Container Types

 Assignment 3: Memoization, Recursive Optimization

 Assignment 4: Recursive Backtracking

 Assignment 5: Big-O, Sorting

 Assignment 6: Classes, Dynamic Arrays

 Assignment 7: Hash Functions, Class Design

 Assignment 8: Linked Structures

 Assignment 9: Trees and Tree Searches

Computer science is more
than just programming.

These skills will make you better
at whatever you choose to do.

So what comes next?

What exactly is computer science?

Fei-Fei Li
Artificial Intelligence

Chris Piech
Education, AI

James Landay
Human/Computer Interaction

Mary Wootters
Theoretical CS

Jeannette Bohg
Robotics

Pat Hanrahan
Graphics, Systems

How do I learn more about it?

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS107
Computer

Organization and
Systems

CS107
Computer Organization and Systems

How does the computer work, at its most
basic levels?

How do those low-level details lead
to larger-scale phenomena?

What levels of abstraction lie beneath
basic C++ concepts?

CS107E
Computer Systems from the Ground Up

How can we use software to control
hardware devices?

How do displays, keyboards, etc. get data
into or out of the computer?

What’s it like to build a
computer system from scratch?

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS110
Principles of

Computer Systems

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS107
Computer

Organization and
Systems

CS103
Mathematical

Foundations of
Computing

CS103
Mathematical Foundations of Computing

What mathematical tools can we use to
analyze programs, processes, and graphs?

Why are some problems harder to solve
than others?

Are there problems that cannot be solved by
computers, and how would we know?

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS110
Principles of

Computer Systems

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS107
Computer

Organization and
Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS109
Probability for Computer Scientists

Why is a randomly-built binary search tree
probably balanced?

How do we use computers to make sense of
large data sets?

What is machine learning, and how do
machines learn?

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS110
Principles of

Computer Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS106B
Programming
Abstractions

CS110
Principles of

Computer Systems

CS161
Design and Analysis

of Algorithms

The CS Core
T
h
e
o
ry

S
ys
te
m
s

CS109
Intro to Probability

for Computer
Scientists

CS107
Computer

Organization and
Systems

CS103
Mathematical

Foundations of
Computing

Next Steps in CS

● It’s reasonable to take one of CS107,
CS103, or CS109 as a next CS class. You’ll
put in a good amount of work and learn a
ton in the process.

● Do not feel pressured to do everything
at once. Taking two of these classes
concurrently is a significant amount of
work, and it isn’t expected of you.

● Want some more guidance? Come talk to
me after class!

Want to explore a bit?

● Any CS class of the form CS5xx is a
seminar course.

● Frequently (not always), it’s “show up,
listen to interesting people speak, and
take away what you will.”

● These can be great ways to see what
different fields are like, and the speakers
are often really inspiring.

CS5xx
(e.g. CS547, CS520, CS522, CS523, etc.)

● CS300 is a course where CS professors
present about their research work.

● It was originally intended for PhD
students; it’s now open to everyone.

● Only offered fall quarter; highly
recommended if you want to learn more
about what’s out there.

CS300
Departmental Lecture Series

● Broad survey of computing topics,
including
● how the internet works,
● computer security,
● how operating systems work,
● bits and bytes, and
● web programming.

● Great course if you’re interested in
working in the software industry in a non-
technical capacity.

CS106E
Practical Exploration of Computing

Want to learn specific technologies?

● Any class of the form CS193x is an
introduction to a particular language or
technology. For example:
● CS193A: Android Programming
● CS193C: Client-Side Web Technologies
● CS193I: iOS Programming
● CS193P: iPhone and iPad Programming
● CS193Q: Accelerated Intro to Python

● Great for learning specific tools.

CS193x
(e.g. CS193A, CS193Q, etc.)

● Explore what C++ programming looks
like outside of CS106B.

● Get exposure to the standard libraries and
some really, really cool techniques beyond
what we saw here.

● Excellent next step if you’d like to work in
C++ going forward.

CS106L
 Standard C++ Programming Lab

Want to dive deeper?

● What values does our technology reflect?
● How can we make sense of contemporary

political and social debates over
technology?

● What are the historical precedents for
what we’re seeing play out now?

● This class is truly fantastic. Please
take it!

CS182
Ethics, Public Policy, and Technological Change

CS147
Intro to Human-Computer Interaction

● How does design thinking apply in
computer science?

● How do you prototype, evaluate, and
refine a new piece of software?

● Prerequisite: CS106B! ✓

The CS Major

CS
Core

Systems

Theory

Artificial
Intelligence

Systems

Theory

Biocomputation

Computer
Engineering

GraphicsHuman-Computer
Interaction

Information

Thinking about CS?

● Good reasons to think about doing CS:
● I like the courses and what I’m doing in them.
● I like the people I’m working with.
● I like the impact of what I’m doing – or I want to steer how

technology is developed and used in the world.
● Bad reasons to think about not doing CS:

● I really enjoy this, but other people are better coders than me.
● I’m learning a lot, but other people have been doing this longer

than me and there’s no way for me to catch up.
● I like the classes I’m taking, but the field is so big and I have no

idea which area to focus in.
● I don’t know what I’m going to be doing many years down the

line, and I don’t want to be pigeonholed into just a tech person.

The CS Major

● A common timetable:
● Aim to complete most of the core by the end of your

sophomore year (probably CS106B, CS103, CS107,
CS109, and one of CS110 and CS161).

● Explore different tracks in your junior year and see
which one you like the most.

● Spend your senior year completing it.
● It’s okay if you start late!

● The latest time you can comfortably start a CS
major would be to take CS106A in winter quarter of
sophomore year.

● And the coterm is always an option!

For more information, visit

https://csmajor.stanford.edu/

https://csmajor.stanford.edu/

The CS Coterm

What’s the Coterm?

● It’s a coterminal master’s degree.
● Work concurrently on your BS (in any subject) and

your MS (in computer science).
● Designed with two populations in mind:

● Give existing CS majors access to more depth and
breadth of knowledge.

● Give non-CS majors a chance to explore CS and emerge
with a thorough command of the material.

● All Stanford undergrads are welcome to apply.
This is intentional, and the door is open to all
comers!

What’s the Coterm Like?

● The MS is 45 units, including the CS core (renamed the
“foundations requirement”), breadth, depth, and
electives.

● Expect to take three CS classes per quarter once you’re
at “grad status.”

● TA (teaching) and RA (research) positions are available
to offset tuition.
● Full-time (“50%”) TA/RA positions offset tuition and provide a

stipend.
● Part-time (“25%”) TA/RA positions offset some tuition and

provides a (smaller) stipend.
● With a 50% TA/RA position, you’re limited to 10

units/quarter. But that’s probably a good idea anyway. 😃

Why Coterm?

● TA and RA positions are available to offset the cost.
● Some of my best TAs did their undergrad in comparative literature,

anthropology, and physics.
● This is a great way to deepen your understanding of the material.

● Thinking about applying?
● Take enough CS classes to establish a track record.

– CS106B on its own is probably not sufficient. Completing most of the CS core
probably is.

● Maintain a solid CS GPA.
– You don’t need a 4.0 in your CS classes. You should aim to do well and make

sure you’re enjoying what you’re doing.

● The department loves having coterms around. We don’t have
a quota, and (empirically, based on no insider knowledge) the
application process is designed to accept as many qualified
people as possible.

For more information, visit

https://cs.stanford.edu/admissions/current-stanford-students/coterminal-program

https://cs.stanford.edu/admissions/current-stanford-students/coterminal-program

The CS Minor

What’s the CS Minor?

● Five classes in CS: take CS103, CS107,
CS109, plus two other depth classes.

● Nice option if you want to keep exploring
CS while pursuing another major.

● For more information, visit
https://cs.stanford.edu/degrees/ug/Minor.shtml

https://cs.stanford.edu/degrees/ug/Minor.shtml

Outside Stanford

Learning More

● Some cool directions to explore:
● Specific technologies. You already know

how to program. You just need to learn new
technologies, frameworks, etc.

● Algorithms. Learn more about what
problems we know how to solve.

● Software engineering. Crafting big
software systems is an art.

● Machine learning. If no new ML
discoveries were made in the next ten years,
we’d still see a huge impact.

How to Explore Them

● Online courses through Coursera, Udacity, edX, etc.
are fantastic ways to learn new concepts.
● Andrew Ng’s machine learning course, Fei Fei Li’s computer

vision course, Tim Roughgarden’s algorithms course, and
Jennifer Widom’s databases courses are legendary.

● Learning by doing is the best way to pick up new
languages and frameworks.
● Find a good tutorial (ask around), plan to make a bunch of

mistakes, and have fun!
● Know where to ask for help.

● Online resources like Stack Overflow can provide help (if
you know how to ask questions well; that can take some
practice!)

Some Words of Thanks

Who's Here Today?
● Aero/Astro
● African / Afro-American

Studies
● Bioengineering
● Biology
● Business
● Chemical Engineering
● Chemistry
● Civil and

Environmental
Engineering

● Classics
● Computer Science
● Creative Writing
● Earth Systems
● Economics
● Education
● Electrical Engineering

● Materials Science and
Engineering

● Mathematical and
Computational Science

● Mathematics
● Mechanical

Engineering
● Music
● Physics
● Psychology
● Public Policy
● Science, Technology,

and Society
● Sociology
● Symbolic Systems
● Theater and

Performing Studies
● Undeclared!

● Energy Resource
Engineering

● English
● Environmental Systems

Engineering
● Environment and

Resources
● Ethics in Society
● Geophysics
● Human Biology
● Immunology
● Individually-Designed
● International Policy
● International Relations
● Law
● Linguistics
● Management Science

and Engineering

My Email Address

htiek@cs.stanford.edu

mailto:htiek@cs.stanford.edu

You now have a wide array of tools you can
use to solve a huge number of problems.

You have the skills to compare
and contrast those solutions.

You have expressive mental models
for teasing apart those problems.

My Questions to You:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

