
Mapping Parks & Rec
I. Problem description
Suppose that you’re writing a website for California’s State and National Parks, and you’ve been
asked to help tourists find their ideal park. To do so, you create a list of all the parks in California,
along with all of the activities that visitors can do when they’re at each park. For example, you
might have this list of parks and their activities:

If a tourist gives you a list of activities, you can then recommend to them every park that has all of
those activities. For example, given the activities “Kayaking,” “Hiking,” and “Camping,” you could
recommend Half Moon Bay, Yosemite, and Castle Rock. Given the activity “Biking,” you could
recommend Half Moon Bay, Big Basin Redwoods, Mount Diablo, and Yosemite. However, given
the activities “Riding” and “Swimming,” you could not recommend any parks at all.

Write a function

Set​<​string​> parksMatching(Map​<​string, Set​<​string​>>& parksMap, Vector​<​string​>&
requirements);

that accepts as input a ​Map<string, Set<string>> that has parks as keys that are associated
with the activities you can do in a given park, along with a tourist’s required activities
(represented by a ​Vector<string>​), and then returns a ​Set<string> holding all of the parks
that match those activities.

Your function should also fulfill the following requirements:

● There might not be any parks that match the requirements, in which case your function
should return an empty set.

● You can assume that all activities have the same capitalization, so you don't need to worry
about case-sensitivity.

● If a client does not include any activities at all in their requirements, you should return a
set containing all the parks, since it is true that all parks match zero requirements.

1

Park Activities

Half Moon Bay Biking, Boating, Camping, Dog Walking, Hiking,
Kayaking, Swimming

Big Basin Redwoods Biking, Camping, Dog Walking, Hiking

Andrew Molera Boating, Camping, Hiking, Swimming,

Mount Diablo Biking, Camping, Hiking, Riding

Yosemite Biking, Climbing, Camping, Hiking, Kayaking, Riding

Castle Rock Climbing, Camping, Hiking, Kayaking

II. Solutions

SOLUTION 1

Solution 1 takes advantage of a helper function to help identify if a park has all of the needed
requirements. It decomposes the logic nicely to avoid any confusion due to nested for loops, and
the helper function passes in the large data structures by reference to avoid making copies. Let n
be the number of parks, m be the maximum number of activities in a park, and k be the number of
requirements. The Big O of this solution is ​O(n*k*log(m))​.

SOLUTION 2

2

Set<​string​> parksMatching(Map<​string​, Set<​string​>>& parksMap, Vector<​string​>&
requirements) {

 ​/* ​TODO:​ Fill me in! */
 ​return​ {};
}

bool​ ​hasAllRequirements​(Set<​string​>& activities, Vector<​string​>& requirements)
{

 ​for​ (​string​ req: requirements) {
 ​if​ (!activities.contains(req)) {
 ​return​ ​false​;
 }

 }

 ​return​ ​true​;
}

Set<​string​> parksMatching(Map<​string​, Set<​string​>>& parksMap, Vector<​string​>&
requirements) {

 Set<​string​> result;
 ​for​ (​string​ park: parksMap) {
 ​if​ (hasAllRequirements(parksMap[park], requirements)) {
 result += park;

 }

 }

 ​return​ result;
}

Set<​string​> parksMatchingV2(Map<​string​, Set<​string​>>& parksMap, Vector<​string​>&
requirements) {

 Set<​string​> activities;
 for (​string​ req: requirements) {

Solution 2 takes advantage of set properties to solve the problem. It first converts the activities
vector into a set and then uses set operations between the new requirements set and a park’s
activities set to see if a park contains all of the necessary activities. Students would need to be
very comfortable with Sets and Set math to come up with this approach to the problem. Using the
same n, m, and k as above, this Big O of this solution is ​O(k log k + n*m*log(k))​. These last
two factors are due to the fact that subtraction between the two sets will require going through
each element in a park’s activities list (​O(m)​) and then removing it from the Set of requirements
(​O(log k)​).

I used the following test cases to make sure that my code was correct as written:

3

 activities.add(req);

 }

 Set<​string​> result;
 for (​string​ park: parksMap) {
 Set<​string​> leftoverActivities = activities - parksMap[park];
 if (leftoverActivities.isEmpty()) {

 result.add(park);

 }

 }

 return result;

}

STUDENT_TEST(​"Test examples from handout."​){
 Map<​string​, Set<​string​>> parkMap = /* Map from handout example */

 ​/* Test Case 1: Multiple input requirements, multiple output parks. */
 Vector<​string​> requirements = {​"Kayaking"​, ​"Hiking"​, ​"Camping"​};
 Set<​string​> expected = {​"Half Moon Bay"​, ​"Yosemite"​, ​"Castle Rock"​};
 EXPECT_EQUAL(parksMatching(parkMap, requirements), expected);

 EXPECT_EQUAL(parksMatchingV2(parkMap, requirements), expected);

 ​/* Test Case 2: Single input requirement, many output parks. */
 requirements = {​"Biking"​};
 expected = {​"Half Moon Bay"​, ​"Big Basin Redwoods"​, ​"Mount Diablo"​, ​"Yosemite"​};
 EXPECT_EQUAL(parksMatching(parkMap, requirements), expected);

 EXPECT_EQUAL(parksMatchingV2(parkMap, requirements), expected);

 ​/* Test Case 3: Input requirements don't match any parks. */
 requirements = {​"Swimming"​, ​"Riding"​};
 expected = {};

 EXPECT_EQUAL(parksMatching(parkMap, requirements), expected);

 EXPECT_EQUAL(parksMatchingV2(parkMap, requirements), expected);

}

III. Problem motivation

Concept coverage
This question is designed to get students playing around with different container and collection
types (here, Vector, Map, and Set) and to work with nested containers. The problem requires an
understanding of:

● How to iterate over each of these different data structures
● The ability to manipulate nested data structures (a set stored as values in a map)
● Passing data structures by reference vs. returning them

Keeping track of how everything is stored, in addition to the set you’re building up, can be difficult.
This problem is also significantly easier to solve if you write a helper function – the logic to handle
everything when you don’t have a separate helper to check if all the requirements are met is
tricky.

Personal significance
From a personal perspective, I struggled with ADTs on the diagnostic exam and wanted to focus
on Sets, Maps, and Vectors in my final project. I also hoped to get more practice with Big O, so I
used the opportunity to develop my understanding of how using different data structures might
affect the runtime of the function. It was interesting to think about how the different data
structure input sizes might make one solution a better option than another, and I also thought
about how if the problem had passed in the user’s requirements as a Set instead of a Vector
(making the first for loop in Solution 2 unnecessary), the last solution’s runtime would have been
O(n*m*log(k)).

I was also interested in real-world applications of these ADTs and wanted to incorporate my
interest in the outdoors into the problem. Using this function would be a great way to help me

4

STUDENT_TEST(​"Edge cases with empty data structures."​){
 ​/* Test Case 4: Empty map of park info, empty set should be returned. */
 Map<​string​, Set<​string​>> parkMap = {};
 Vector<​string​> requirements = {​"Kayaking"​, ​"Hiking"​, ​"Camping"​};
 Set<​string​> expected = {};
 EXPECT_EQUAL(parksMatching(parkMap, requirements), expected);

 EXPECT_EQUAL(parksMatchingV2(parkMap, requirements), expected);

 ​/* Test Case 5: Empty requirements vector, all keys in map should be returned
in set. */

 parkMap = /* map from handout */

 requirements = {};

 expected = {​"Half Moon Bay"​, ​"Big Basin Redwoods"​, ​"Andrew Molera"​, ​"Mount
Diablo"​, ​"Yosemite"​, ​"Castle Rock"​};
 EXPECT_EQUAL(parksMatching(parkMap, requirements), expected);

 EXPECT_EQUAL(parksMatchingV2(parkMap, requirements), expected);

}

plan my camping trips!

IV. Common misconceptions
Misconceptions or bugs could come in one of three main areas in this problem:

● Looping over all of the parks
● Checking for required activities for a given park
● Building up the resulting set of parks

Maps are unordered data structures, and a student might incorrectly try to use a for loop with a
counter variable to index into the key-value items in the map. Students might also loop over the
values (activity sets) instead of the keys (parks), which would not prevent them from being able to
build up the resulting parks set.

When checking if a park has the given requirements, students might accidentally return true (or
set a flag to true) as soon as the first required activity is found instead of after all of the required
activities is found. Students may also attempt to exactly match the requirements to the park’s
activities (instead of just checking if they are a subset of the activities). Lastly, a student may
forget to loop over the elements in requirements and may instead try to check if the entire
requirements Vector is inside an activities Set (e.g. set.contains(requirements)).

When building up the set of parks, students might accidentally initialize the result Set inside the
for loop over the parks, which would prevent it from being returned outside the loop.
Alternatively, they may forget to add to the result Set when all activities match (for example, just
returning the first park that matches) or forget to return the Set they build up.

Lastly, common bugs when dealing with these data structures include off-by-one errors or
accidentally editing the data structures passed in by reference while iterating over them.

5

