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Today’s 
question

What strategies should we 
use when solving recursive 
backtracking problems?



Today’s 
topics

1. Review

2. Recursive backtracking 
strategies

3. Practice applying strategies
a. Selecting fixed-size 

groups
b. Solving mazes with DFS
c. Knapsack problem



Review
(intro to recursive backtracking)



Two types of recursion

Basic recursion

● One repeated task that builds up 
a solution as you come back up 
the call stack

● The final base case defines the 
initial seed of the solution and 
each call contributes a little bit to 
the solution

● Initial call to recursive function 
produces final solution

Backtracking recursion

● Build up many possible solutions 
through multiple recursive calls at 
each step

● Seed the initial recursive call with 
an “empty” solution

● At each base case, you have a 
potential solution



Two methods of choose/explore/unchoose

● Choose explore undo
○ Uses pass by reference; usually with large data structures
○ Explicit unchoose step by "undoing" prior modifications to structure
○ E.g. Generating subsets (one set passed around by reference to track 

subsets)

● Copy edit explore
○ Pass by value; usually when memory constraints aren’t an issue
○ Implicit unchoose step by virtue of making edits to copy
○ E.g. Building up a string over time

Backtracking recursion: Exploring many possible solutions



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



Word Scramble: 
Finding all permutations



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



What defines our permutations decision tree?

● Decision at each step (each level of the tree):
○ What is the next letter that is going to get added to the permutation?

● Options at each decision (branches from each node):
○ One option for every remaining element that hasn't been selected yet
○ Note: The number of options will be different at each level of the tree!

● Information we need to store along the way:
○ The permutation you’ve built so far
○ The remaining elements in the original sequence



Decision tree: Find all permutations of "cat" 
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Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in 
backtracking recursion that we applied to generate permutation can be 
thought of as "copy, edit, recurse"

● At each step of the recursive backtracking process, it is important to keep 
track of the decisions we've made so far and the decisions we have left to 
make

● Backtracking recursion can have variable branching factors at each level

● Use of helper functions and initial empty params that get built up is common



Shrinkable Words: 
Seeing if a solution exists



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including...
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



What defines our shrinkable decision tree?

● Decision at each step (each level of the tree):
○ What letter are going to remove?

● Options at each decision (branches from each node):
○ The remaining letters in the string

● Information we need to store along the way:
○ The shrinking string



What defines our shrinkable decision tree?

ct ct

cart

art

at

a

Examples from Chris Gregg and Keith Schwarz



Takeaways

● This is another example of copy-edit-recurse to choose, explore, and then 
implicitly unchoose!

● In this problem, we’re using backtracking to find if a solution exists.
○ Notice the way the recursive case is structured:

for all options at each decision point:

if recursive call returns true:

return true;

return false if all options are exhausted;



Making teams: 
Generating all possible 
subsets



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



Subsets

Given a group of people, suppose we wanted to generate all possible teams, or 
subsets, of those people:

{}

{“Nick”}

{“Kylie”}

{“Trip”}

{“Nick”, “Kylie”}

{“Nick”, “Trip”}

{“Kylie”, “Trip”}

{“Nick”, “Kylie”, “Trip”}

Another case of 
“generate/count all 

solutions” using recursive 
backtracking!



What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set



Decision tree

Remaining: {“Nick”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}



Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing 

them!

● Note the difference in the options at each step in this problem vs. the previous 
two.

● This was our first example using ADTs with recursion, and we’ll see more 
today!



What process should we use to 
solve recursive backtracking 

problems?



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution? (subsets, 

permutations, or something else)

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution? (a boolean, void but printing out a string or ADT)
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful? (sets, strings)

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Combinations



Creating fixed-size teams: 
Generating all possible 
combinations





You need at least five U.S. Supreme Court 
justices to agree to set a precedent. 

What are all the ways you can pick five 
justices off the U.S. Supreme Court?



Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 justices out of a group of 9. 



Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 justices out of a group of 9. 

● This sounds very similar to the problem we solved when we generated subsets 
– these 5 justices would be a subset of the overall group of 9.
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● Our goal: We want to pick a combination of 5 justices out of a group of 9. 

● This sounds very similar to the problem we solved when we generated subsets 
– these 5 justices would be a subset of the overall group of 9.

● What distinguishes a combination from a subset?
○ Combinations always have a specified size, unlike subsets (which can be any size)
○ We can think of combinations as "subsets with constraints"



Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 justices out of a group of 9. 

● This sounds very similar to the problem we solved when we generated subsets 
– these 5 justices would be a subset of the overall group of 9.

● What distinguishes a combination from a subset?
○ Combinations always have a specified size, unlike subsets (which can be any size)
○ We can think of combinations as "subsets with constraints"

● Could we use the code from last lecture, generate all subsets, and then filter 
out all those of size 5?
○ We could, but that would be inefficient. Let's develop a better approach for combinations!



How do we approach this 
problem?



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?
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solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 
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● What are our base and recursive cases?
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Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
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Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



What are we returning as our solution?

● Each combination of k judges can be represented as a Set<string>.

● In Friday’s examples, we were content with just printing out all solutions. But 
what if we wanted to store all of them to be able to do something with them 
later?

● We want to return a container holding all possible combinations:

Set<Set<string>>

It’s not that unusual to see containers nested this way!



What are we returning as our solution?

● Each combination of k judges can be represented as a Set<string>.

● In Friday’s examples, we were content with just printing out all solutions. But 
what if we wanted to store all of them to be able to do something with them 
later?

Set<Set<string>> combinationsOf(Set<string>& judges, int k)



Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& judges, int k)

We’ll need to keep track of a current set of judges as we’re building up each 
possible set of strings. (We need a helper!)



Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& judges, int k)

We’ll need to keep track of a current set of judges as we’re building up each 
possible set of strings. (We need a helper!)

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, Set<string>& 

chosen)



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Generating Combinations



Generating Combinations



Generating Combinations



Generating Combinations

Option 1:
Exclude this person



Generating Combinations

Option 1:
Exclude this person



Generating Combinations

Option 1:
Exclude this person



Generating Combinations

Option 1:
Exclude this person



Generating Combinations

Option 1:
Exclude this person

One way to choose 5 elements out 
of  9 is to exclude the first 

element, and then to choose 5 
elements out of the remaining 8.



Generating Combinations

Option 2:
Include this person



Generating Combinations

Option 2:
Include this person



Generating Combinations

Option 2:
Include this person



Generating Combinations

Option 2:
Include this person



Generating Combinations

Option 2:
Include this person

One way to choose 5 elements out 
of  9 is to include the first 

element, and then to choose 4 
elements out of the remaining 8.



Writing functions that build combinations

● Suppose we get to the following scenario:

Pick 0 more Justices out of: 
{Kagan, Breyer}

Chosen so far: 
{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

● There’s no need to keep looking!  What do we return in this case?



Writing functions that build combinations

● Suppose we get to the following scenario:

Pick 0 more Justices out of: 
{Kagan, Breyer}

Chosen so far: 
{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

● There’s no need to keep looking!  We can return a set containing the set of 
who we’ve chosen so far.



Writing functions that build combinations

● Suppose we get to the following scenario:

Pick 0 more Justices out of: 
{Kagan, Breyer}

Chosen so far: 
{Ginsburg, Roberts, Gorsuch, Thomas, Sotomayor}

● There’s no need to keep looking!  We can return a set containing the set of 
who we’ve chosen so far.

This is our base case! (part 1)



Writing functions that build combinations

● Suppose we get to the following scenario:

Pick 5 more Justices out of: 
{Sotomayor, Thomas, Roberts, Gorsuch}

Chosen so far: 
{}

● There’s no need to keep looking!  What do we return in this case?



Writing functions that build combinations

● Suppose we get to the following scenario:

Pick 5 more Justices out of: 
{Sotomayor, Thomas, Roberts, Gorsuch}

Chosen so far: 
{}

● There’s no need to keep looking!  We can return an empty set.



Writing functions that build combinations

● Suppose we get to the following scenario:

Pick 5 more Justices out of: 
{Sotomayor, Thomas, Roberts, Gorsuch}

Chosen so far: 
{}

● There’s no need to keep looking!  We can return an empty set.

This is our base case! (part 2)



What about our combinations decision tree?

Combinations slides adapted from Keith Schwarz



What about our combinations decision tree?

Combinations slides adapted from Keith Schwarz

This is just the beginning of the tree, but helps us understand our recursive case.



What defines our combinations decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our combination?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The combination you’ve built so far
○ The remaining elements to choose from
○ The remaining number of spots left to fill



What defines our combinations decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our combination?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The combination you’ve built so far
○ The remaining elements to choose from
○ The remaining number of spots left to fill



Pseudocode

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, 

Set<string>& chosen)



Pseudocode

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, 

Set<string>& chosen)

● Recursive case:
○ Choose: Pick an element in remaining.
○ Explore: Try including and excluding the element and store resulting sets.
○ Unchoose: Restore our remaining and chosen sets.
○ Return the the combined returned sets from both inclusion and exclusion.



Pseudocode

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, 

Set<string>& chosen)

● Recursive case:
○ Choose: Pick an element in remaining.
○ Explore: Try including and excluding the element and store resulting sets.
○ Unchoose: Restore our remaining and chosen sets.
○ Return the the combined returned sets from both inclusion and 

exclusion.

This is different from our 
usual recursion pattern!



Pseudocode

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, 

Set<string>& chosen)

● Recursive case:
○ Choose: Pick an element in remaining.
○ Explore: Try including and excluding the element and store resulting sets.
○ Unchoose: Restore our remaining and chosen sets.
○ Return the the combined returned sets from both inclusion and exclusion.

● Base cases: 
○ Not enough remaining elements to choose from → return empty set
○ No more space in chosen (k is maxed out) → return set with chosen



Let's code it!



Takeaways

● Making combinations is very similar to our recursive process for generating 
subsets!

● The differences:
○ We’re constraining the subsets’ size.
○ We’re building up a set of all valid subsets of that particular size (i.e. 

combinations).

● Instead of printing out subsets in our base case, we have to return individual 
sets in our base case and then build up and return our resulting set of sets in 
our recursive case



Announcements



Announcements

● Assignment 3 is due tonight at 11:59pm PDT. The grace period ends tomorrow 
at 11:59pm PDT.

● Assignment 4 (backtracking recursion!) will be released by the end of the day.

● Assignment 2 revisions are due Thursday at 11:59pm PDT.

● The mid-quarter diagnostic is coming up at the end of this week. 
○ Please check out the website and review last Wednesday’s lecture for all the logistics!
○ Today is the last day of content that will be on the assessment.
○ Today’s and Friday’s lecture will only show up as extra credit.

https://web.stanford.edu/class/cs106b/assessments/1-diagnostic/


Revisiting mazes



Solving mazes with breadth-first search (BFS)

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview


Solving mazes with breadth-first search (BFS)

Can we do it recursively?



How do we approach this 
problem?



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Do we need a helper function?

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)



Do we need a helper function?

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

● We need a helper function to keep track of our path through the maze!
○ Our helper function will have as parameters: the maze itself and the path we’re building up.
○ We also want the helper to be able to tell us whether or not the maze is solvable – let’s have it 

return a boolean.



Do we need a helper function?

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

● We need a helper function to keep track of our path through the maze!

bool solveMazeHelper(Grid<bool>& maze, 

Stack<GridLocation>& path)



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze
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A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

Dead end! 
(cannot go North, 

South, East, or West)



A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

We must go back one 
step.



A recursive algorithm for solving mazes
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A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

End of the maze!



A recursive algorithm for solving mazes

● Base case: If we’re at the end of the maze, stop
● Recursive case: Explore North, South, East, then West

start

finish



What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either 

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location
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Exercise for home: 
Draw the decision tree.



What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either 

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location



We need to make an adjustment!

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

● We need a helper function to keep track of our path through the maze!

bool solveMazeHelper(Grid<bool>& maze, 

Stack<GridLocation>& path, 

GridLocation cur)



Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up, 

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or 

not a location has been visited by flipping the cell to false once it’s in the path (to 
avoid loops) → This works with our existing generateValidMoves() function
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Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up, 

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or 

not a location has been visited by flipping the cell to false once it’s in the path (to 
avoid loops) → This works with our existing generateValidMoves() function

● Recursive case: Iterate over valid moves from generateValidMoves() and try adding 
them to our path
○ If any recursive call returns true, we have a solution
○ If all fail, return false

● Base case: We can stop exploring when we’ve reached the exit → return true if the 
current location is the exit



Let’s code it!



Takeaways

● Recursive maze-solving uses choose/explore/undo because we have to 
explicitly “unchoose” by setting cells back to true after trying them.

● Our helper function may have a different return type from our initial function 
prototype, and our wrapper function (not the helper) may be more complex 
than just a call to our helper function.

● It may be helpful to revisit and adjust our initial answers to our planning 
questions as we determine more about the algorithm we want to use (e.g. 
adding a parameter to our helper function).



Recursion is depth-first search 
(DFS)!



BFS vs. DFS comparison Which do you think will be faster?

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview


BFS vs. DFS comparison

● BFS is typically iterative while DFS is naturally expressed recursively.

● Although DFS is faster in this particular case, which search strategy to use 
depends on the problem you’re solving.

● BFS looks at all paths of a particular length before moving on to longer paths, 
so it’s guaranteed to find the shortest path (e.g. word ladder)!

● DFS doesn’t need to store all partial paths along the way, so it has a smaller 
memory footprint than BFS does.



Recursive Optimization



"Hard" Problems
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"Hard" Problems

● There are many different categories of problems in computer science that are 
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

● For these categories of problems, there exist no known "good" or "efficient" 
ways to generate the best solution to the problem. The only known way to 
generate an exact answer is to try all possible solutions and select the best 
one.
○ Often times these problems involve finding permutations (O(n!) possible solutions) or 

combinations (O(2^n) possible solutions)

● Backtracking recursion is an elegant way to solve these kinds of problems!



The Knapsack Problem
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The Knapsack Problem

● Imagine yourself in a new lifestyle as a professional wilderness survival expert

● You are about to set off on a challenging expedition, and you need to pack 
your knapsack (or backpack) full of supplies. 

● You have a list full of supplies (each of which has a survival value and a weight 
associated with it) to choose from. 

● Your backpack is only sturdy enough to hold a certain amount of weight. 

● Question: How can you maximize the survival value of your backpack?



Breakout Rooms: Solve 
a small knapsack 
example



The "Greedy" Approach

What happens if you always choose to include the item with the highest value that 
will still fit in your backpack?

      Rope
- Value: 3
- Weight: 2

       Axe
- Value: 4
- Weight: 3

       Tent
- Value: 5
- Weight: 4

  Canned food
- Value: 6
- Weight: 5
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- Weight: 3
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- Value: 5
- Weight: 4
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- Weight: 5

Why doesn’t this work?



The "Greedy" Approach

What happens if you always choose to include the item with the highest value that 
will still fit in your backpack?

      Rope
- Value: 3
- Weight: 2

       Axe
- Value: 4
- Weight: 3

       Tent
- Value: 5
- Weight: 4

  Canned food
- Value: 6
- Weight: 5

Items with lower individual 
values may sum to a higher 

total value!



The Recursive Approach

Idea: Enumerate all subsets of weight <= 5 and pick the one with best total 
value.



The Recursive Approach

Idea: Enumerate all subsets of weight <= 5 and pick the one with best 
total value.

This is generating combinations!



How do we approach this 
problem?



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Using backtracking recursion

● There are 3 main categories of problems that we can solve by using 
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible 

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve, 
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more



The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.



The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.

Our final backtracking use case: “Pick one best solution”!
(i.e. optimization)



The Recursive Approach

Idea: Enumerate all combinations and pick the one with best total value.

We’ll need to keep track of the total value we’re building up,
but for this version of the problem, we won’t worry about

finding the actual best subset of items itself.



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 
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Problem Setup

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

● Assume that we have defined a custom BackpackItem struct, which packages 
up an item’s survivalValue (int) and weight (int).

● We need to return the max value we can get from a combination of items 
under targetWeight.



Problem Setup

int fillBackpack(Vector<BackpackItem>& items, int targetWeight);

● Assume that we have defined a custom BackpackItem struct, which packages 
up an item’s survivalValue (int) and weight (int).

● We need to return the max value we can get from a combination of items 
under targetWeight.

We need a helper function!



Pseudocode

● We need a helper function!

int fillBackpackHelper(Vector<BackpackItem>& items, 

 int capacityRemaining, int curValue);



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution?
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● Decision at each step (each level of the tree):
○ Are we going to include a given item in our combination?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The total value so far
○ The remaining elements to choose from
○ The remaining capacity (weight) in the backpack



What defines our knapsack decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given item in our combination?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The total value so far
○ The remaining elements to choose from
○ The remaining capacity (weight) in the backpack

This should look very 
similar to our previous 
combinations problem!



Pseudocode

● Recursive case:
○ Select an unconsidered item.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0 

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value



Let’s code it!
(if time allows)



Challenge extensions 
on knapsack
(for you to try at home)



Challenge #1: Improving our efficiency

● For efficiency, we’ll use an index to keep track of which items we’ve already 
looked at inside items:

int fillBackpackHelper(Vector<BackpackItem>& items, 

 int capacityRemaining, int curValue, 

     int index);



Our adjusted pseudocode

● Recursive case:
○ Select an unconsidered item based on the index.
○ Recursively calculate the values both with and without the item.
○ Return the higher value.

● Base cases:
○ No remaining capacity in the knapsack → return 0 

(not a valid combination with weight <= 5)
○ No more items to choose from → return current value



Challenge #2: Tracking our items

● What if we wanted to know what combination of items resulted in the best 
value?

● Think about which answers to which questions in our recursive backtracking 
strategy would change.



Takeaways

● Finding the best solution to a problem (optimization) can often be thought of as 
an additional layer of complexity/decision making on top of the recursive 
enumeration we've seen before

● For "hard" problems, the best solution can only be found by enumerating all 
possible options and selecting the best one. 

● Creative use of the return value of recursive functions can make applying 
optimization to an existing function straightforward.



Recursion Wrap-up



Two types of recursion

Basic recursion

● One repeated task that builds up 
a solution as you come back up 
the call stack

● The final base case defines the 
initial seed of the solution and 
each call contributes a little bit to 
the solution

● Initial call to recursive function 
produces final solution

Backtracking recursion

● Build up many possible solutions 
through multiple recursive calls at 
each step

● Seed the initial recursive call with 
an “empty” solution

● At each base case, you have a 
potential solution



Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with 

large data structures
○ Explicit unchoose step by "undoing" 

prior modifications to structure
○ E.g. Generating subsets (one set 

passed around by reference to track 
subsets)

● Copy edit explore
○ Pass by value; usually when memory 

constraints aren’t an issue
○ Implicit unchoose step by virtue of 

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions 
(enumeration)

2. Find one solution (or prove 
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose



Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one 

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution? (subsets, 

permutations, combinations, or something else)

● What’s the provided function prototype and requirements?  Do we need a helper function?
○ What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
○ Do we care about returning or keeping track of the path we took to get to our solution?  If yes, 

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion? (Note: 

In some very complex problems, it might be some combination of the two.)
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