
Programming Abstractions

Cynthia Lee

C S 1 0 6 B

Today’s Topics

Abstract Data Types

 What is an ADT?

 Vector ADT

 Grid ADT

 Next time: Stack, Queue ADTs

ADTs

ADTs = “Abstract Data Types”

 Language-independent models of common containers

› In other words, we try to focus on the aspects of the ADT
that transcend whether we happen to be using it in C++,
Java, Python, or some other language

 ADTs encompass both the nature of the data and ways of
accessing it

 ADTs form a rich vocabulary of nouns (nature of the data)
and verbs (ways of accessing it), often drawing on
analogies to make their use intuitive

› Skillful ADT use gives code added readability!

Types of ADTs

 When we say the “nature of the data,” we mean questions like:

› Is the data ordered in some way?

• Could/should you be able to say about the data that this element is the
“first” one, and this other piece is the “tenth” one?

› Is the data paired or matched in some way?

• Could/should you be able to say about the data that this element A
goes with element B (not D), and this element C goes with element D
(not B)?

 When we say “ways of accessing it,” we mean questions like:

› Is it important to be able to add and remove data during the course of
use, or do we assume we have the “final” version from the beginning?

› Is it important to be able to search for any piece of data in the collection,
or is it enough to always take the first available one?

Types of ADTs

 When we say the “nature of the data,” we mean questions like:

› Is the data ordered in some way?

• Could/should you be able to say about the data that this element is the
“first” one, and this other piece is the “tenth” one?

› Is the data paired or matched in some way?

• Could/should you be able to say about the data that this element A
goes with element B (not D), and this element C goes with element D
(not B)?

 When we say “ways of accessing it,” we mean questions like:

› Is it important to be able to add and remove data during the course of
use, or do we assume we have the “final” version from the beginning?

› Is it important to be able to search for any piece of data in the collection,
or is it enough to always take the first available one?

We’ll talk about ADTs in this category
today and Wednesday.

We’ll talk about ADTs in this
category on Friday.

Vector

O U R F I R S T A D T !

Vector ADT

 ADT abstraction similar to an array or list

 You’re probably thinking, “Hey, there was something like that in the
language I studied before!”

› This shouldn’t be a surprise—remember that ADTs are defined as
conceptual abstractions that are language-independent

 We will use Stanford library Vector (there is also an C++ STL vector, which
will not use—watch out for capitalization!)

Stanford Library Vector

 We declare one like this:

› #include "vector.h" // note quotes to mean Stanford version

› Vector<string> lines; // note uppercase V here

 This syntax is called template syntax

› In C++, template containers must be homogenous (all items the same type)

› The type goes in the < > after the class name Vector

// Example: initialize a vector containing 5 integers

Vector<int> nums {42, 17, -6, 0, 28};

index 0 1 2 3 4

value 42 17 -6 0 28

Vector

 Examples of declaring a Vector:

› Vector<int> pset3Scores;

› Vector<double> measurementsData;

› Vector<Vector<int>> allAssignmentScores;

 Examples of using a Vector:

› pset3Scores.add(98);

› pset3Scores.add(85);

› pset3Scores.add(92);

› cout << pset3Scores[0] << endl; // prints 98

› cout << pset3Scores[pset3Scores.size() - 1] << endl; // prints 92

› allAssignmentScores.add(pset3Scores);

› cout << allAssignmentScores[0][1] << endl; // prints 85

More on 2-D Vectors in a
moment, with Grid ADT!

Vector Performance

A L I T T L E P E E K A T H O W
V E C T O R S W O R K B E H I N D

T H E S C E N E S

Performance Warning Vector insert/remove

 v.insert(2, 42)
› shift elements right to make room for the new element

 v.remove(1)
› shift elements left to cover the space left by the removed element

 These operations are slower the more elements they need to shift

index 0 1 2 3 4

value 3 8 9 7 5

index 0 1 2 3 4 5

value 3 8 42 9 7 5

index 0 1 2 3 4 5

value 3 8 42 9 7 5

index 0 1 2 3 4

value 3 42 9 7 5

Performance Warning Vector insert/remove

 v.insert(2, 42)
› shift elements right to make room for the new element

 v.remove(1)
› shift elements left to cover the space left by the removed element

 These operations are slower the more elements they need to shift

index 0 1 2 3 4

value 3 8 9 7 5

index 0 1 2 3 4 5

value 3 8 42 9 7 5

index 0 1 2 3 4 5

value 3 8 42 9 7 5

index 0 1 2 3 4

value 3 42 9 7 5

Pro tip: if possible in your
situation, try to use add()

(at the end) rather than
insert() at the beginning

Your turn: Vector performance

 Warm-up question: tell a neighbor what the contents of the vector look
like at the end of each of OPTION 1 and at the end of OPTION 2. (As shown,
v starts out empty in both cases)

Vector<int> v;
for (int i = 0; i < 100; i++) {

v.add(i); // OPTION 2
}

Vector<int> v;
for (int i = 0; i < 100; i++) {

v.insert(0, i); // OPTION 1
}

index 0 1 2 3 4 …

value 0 1 2 3 4 …

index 0 1 2 3 4 …

value 99 98 97 96 95 …

Your turn: Vector performance

 Compare how many times we write a number into one “box” of the Vector,
in these two codes. Write can be the original write, or because it had to
move over one place. (As shown, v starts out empty in both cases)

A. They both write in a box about the same number of times

B. One writes about 2x as many times as the other

C. One writes about 5x as many times as the other

D. Something else!

Answer now on pollev.com/cs106b !

Vector<int> v;
for (int i = 0; i < 100; i++) {

v.add(i); // OPTION 2
}

Vector<int> v;
for (int i = 0; i < 100; i++) {

v.insert(0, i); // OPTION 1
}

Since B and C don’t say which
option writes more than the

other, if you pick one of those,
be sure to address that in your

group discussion!

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)

› In addition to analyzing the code and predicting number of writes needed, we can also
time the code using our Stanford 106B test system.

› Check the code bundle for class today for runnable version!

/* * * * * * Test Cases * * * * * */
PROVIDED_TEST("Timing comparison")
{

int size = 500000;
TIME_OPERATION(size, runInsert(size));
TIME_OPERATION(size, runAdd(size));

}

void runInsert(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.insert(0, i);
}

}

void runAdd(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.add(i);
}

}

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)

› In addition to analyzing the code and predicting number of writes needed, we can also
time the code using our Stanford 106B test system.

› Check the code bundle for class today for runnable version!

/* * * * * * Test Cases * * * * * */
PROVIDED_TEST("Timing comparison")
{

int size = 500000;
TIME_OPERATION(size, runInsert(size));
TIME_OPERATION(size, runAdd(size));

}

void runInsert(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.insert(0, i);
}

}

void runAdd(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.add(i);
}

}

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)

› Number of times a number is written in a box:

• OPTION 1:

– First loop iteration: 1 write

– Next loop iteration: 2 writes … continued…

– Formula for sum of numbers 1 to N = (N * (N + 1)) / 2

– (don’t worry if you don’t know this formula, we only expected a ballpark
estimate)

– 100 * (100 + 1) / 2 = 10,100 / 2 = 5,050

• OPTION 2:

– First loop iteration: 1 write

– Next loop iteration: 1 write … continued…

– 100

Vector performance and parameter passing

 Pro Tip: always use pass-by-reference for containers like Vector (and Grid,
which we’ll see next) in this class!

› For efficiency reasons—don’t want to make a big copy every time with pass-
by-value!

void printFirst(Vector<int>& input) {

cout << input[0] << endl;

}

void printFirst100Times(Vector<int>& input) {

for (int i = 0; i < input.size(); i++) {

printFirst(input); // very expensive if not for &

}

}

Grid container

E S S E N T I A L L Y A M A T R I X
(L I N E A R A L G E B R A F A N S

C E L E B R A T E N O W)

Grid

 ADT abstraction similar to an array of arrays (matrix)

 Many languages have a version of this

› (remember, ADTs are conceptual abstractions that are language-
independent)

 In C++ we declare one like this: #include "grid.h"

Grid<int> chessboard;
Grid<int> image;
Grid<double> realMatrix;

Code Reading Exercise: Grids and loops and loop

void printMe(Grid<int>& grid, int row, int col) {

for (int r = row - 1; r <= row + 1; r++) {

for (int c = col - 1; c <= col + 1; c++) {

if (grid.inBounds(r, c)) {

cout << grid[r][c] << " ";

}

}

cout << endl;

}

}

2 1 2 0 0

1 0 2 1 2

0 0 0 1 1

2 2 2 2 2

1 1 0 1 1(A) None or 1

(B) 2 or 3

(C) 4 or 5

(D) 6 or 7

How many 0’s does this print
with input row = 2, col = 3?
(and grid as shown on right)

Handy loop idiom: iterating over “neighbors” in a Grid

void printNeighbors(Grid<int>& grid, int row, int col) {

for (int r = row - 1; r <= row + 1; r++) {

for (int c = col - 1; c <= col + 1; c++) {

if (grid.inBounds(r, c)) {

cout << grid[r][c] << " ";

}

}

cout << endl;

}

}

These nested for loops generate all the pairs in the cross product {-1,0,1} x {-1,0,1}, and we can
add these as offsets to a (r,c) coordinate to generate all the neighbors (note: often want to test
for and exclude the (0,0) offset, which is “myself” not a neighbor)

row - 1
col – 1

row - 1
col + 0

row - 1
col + 1

row + 0
col - 1

row
col

row + 0
col +1

row + 1
col - 1

row + 1
col + 0

row + 1
col + 1

