
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Recursion!

 Functions calling functions

Next time:

 More recursion! It’s Recursion Week!

› Like Shark Week, but more nerdy

Recursion!
The exclamation point isn’t there only
because this is so exciting; it also relates to
our first recursion example….

Factorial!

𝒏! = 𝒏 𝒏 − 𝟏 𝒏 − 𝟐 𝒏 − 𝟑 𝒏 − 𝟒 … (𝟑)(𝟐)(𝟏)

This could be a really long expression!

Recursion is a technique for tackling large or complicated problems by
just “eating” one “bite” of the problem at a time.

Factorial!

𝒏! = 𝒏 𝒏 − 𝟏 𝒏 − 𝟐 𝒏 − 𝟑 𝒏 − 𝟒 … (𝟐)(𝟏)

An alternate mathematical formulation:

𝑛! = ቊ
1 𝑖𝑓 𝑛 = 1

𝑛 𝒏 − 𝟏 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Translated to code

int factorial(int n) {

if (n == 1) {

return 1;

} else {

return n * someFunctionThatKnowsFactorialOfNMinus1();

}

}

Factorial!

𝒏! = 𝒏 𝒏 − 𝟏 𝒏 − 𝟐 𝒏 − 𝟑 𝒏 − 𝟒 … (𝟐)(𝟏)

An alternate mathematical formulation:

𝑛! = ቊ
1 𝑖𝑓 𝑛 = 1

𝑛 𝒏 − 𝟏 ! 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Translated to code

int factorial(int n) {

if (n == 1) {

return 1;

} else {

return n * factorial(n - 1);

}

}

The recursive function pattern

Always two parts:

Base case:

• This problem is so tiny, it’s hardly a problem anymore! Just give answer.

Recursive case:

• This problem is still a bit large, let’s bite off just one piece, and delegate
the remaining work to recursion.

Translated to code

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet! Do 1 piece

return n * factorial(n - 1);

}

}

The recursive function pattern

Recursive case:

• This problem is still a bit large, let’s bite off just one piece, and
delegate the remaining work to recursion.

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet! Do 1 piece

return n * factorial(n - 1);

}

}This is an example of “one piece”
of the problem—just doing one of
the many, many multiplications

required for factorial.

The recursive function pattern

Recursive case:

• This problem is still a bit large, let’s bite off just one piece, and
delegate the remaining work to recursion.

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet! Do 1 piece

return n * factorial(n - 1);

}

}
This is an example

“delegating the
remaining work”—all the
other multiplications—to

the recursive call.

The recursive function pattern

Recursive case:

• This problem is still a bit large, let’s bite off just one piece, and
delegate the remaining work to recursion.

int factorial(int n) {

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet! Do 1 piece

return n * factorial(n - 1);

}

}This is an example of “one piece”
of the problem—just doing one of
the many, many multiplications

required for factorial.

This is an example
“delegating the

remaining work”—all the
other multiplications—to

the recursive call.

Recap: the recursive function pattern

 Recursion is a way of taking a big problem and
repeatedly breaking it into smaller and smaller pieces
until it is so small that it can be so easily solved that it
almost doesn't even need solving.

 There are two parts of a recursive algorithm:

› base case: where we identify that the problem is so
small that we trivially solve it and return that result

› recursive case: where we see that the problem is still a
bit too big for our taste, so we chop it into smaller bits
and call ourselves (the function we are in now) on the
smaller bits to find out the answer to the problem we
face11

Digging deeper in the recursion
Looking at how recursion works “under the hood”

12

Factorial!

What is the third thing printed when we call factorial(4)?
A. 1
B. 2
C. 3
D. 4
E. Other/none/more

int factorial(int n) {

cout << n << endl; // **Added for this question**

if (n == 1) { // Easy! Return trivial answer

return 1;

} else { // Not easy enough to finish yet! Do 1 piece

return n * factorial(n - 1);

}

}

How does this look in memory?
A little background…

 A computer’s memory is like a giant Vector/array, and like a Vector, we start
counting at index 0.

 We typically draw memory vertically (rather than horizontally like a Vector),
with index 0 at the bottom.

 A typical laptop’s memory has billions of these indexed slots (one byte
each)

0

8,000,000,000

…

* Take CS107 to learn much more!!

How does this look in memory?
A little background…

 Broadly speaking, we divide memory into regions:

 Text: the program’s own code (needs to be in memory so it can run!)

 Heap: we’ll learn about this later in CS106B!

 Stack: this is where local variables for each function are stored.

Heap

Stack

0
Text

* Take CS107 to learn much more!!

How does this look in memory?

Memory Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:

0

4

0

Memory Memory Memory
(A) (B) (C)

(D) Other/none of the above

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

main()

Text, Heap

factorial() n: 3

myfunction()x:

xfac:
4

0

main()

Text, Heap

factorial()n: 3, 4

myfunction()x:

xfac:
4

0

factorial() n: 3

Fun fact:
The “stack” part of memory is a stack

Function call = push a stack frame

Function return = pop a stack frame

* Take CS107 to learn much more!!

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

Answer: 3rd

thing
printed is 2

The “stack” part of memory is a stack

Recursive code

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

factorial() n: 1

Factorial!

Recursive code

What is the fourth
value ever returned
when we call
factorial(4)?
A. 4
B. 6
C. 10
D. 24
E. Other/none/more

than one

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

The “stack” part of memory is a stack

Recursive code

Return 1

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

factorial() n: 1

The “stack” part of memory is a stack

Recursive code

Return 2

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

factorial() n: 2

The “stack” part of memory is a stack

Recursive code

Return 6

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

factorial() n: 3

The “stack” part of memory is a stack

Recursive code

Return 24

int factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

void myfunction(){

int x = 4;

int xfac = 0;

xfac = factorial(x);

}

main()

Text, Heap

factorial() n: 4

myfunction()x:

xfac:
4

0

Answer: 4th

thing returned
is 24

Factorial!

Iterative version

int factorial(int n) {

int f = 1;

while (n > 1) {

f = f * n;

n = n – 1;

}

return f;

}

Recursive version

NOTE: sometimes iterative can be
much faster because it doesn’t
have to push and pop stack frames.
Method calls have overhead in
terms of space and time (to set up
and tear down).

int factorial(int n) {

if (n == 1) return 1;

else return n * factorial(n – 1);

}

How do we measure
“faster” in Computer

Science?

N O T A S S I M P L E A S Y O U M I G H T
T H I N K …

29

Recall our discussion of performance
with the Vector add vs. Insert…

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)
› In addition to analyzing the code and predicting number of writes needed, we can also time

the code using our Stanford 106B test system.
› Check the code bundle for class today for runnable version!

/* * * * * * Test Cases * * * * * */
PROVIDED_TEST("Timing comparison")
{

int size = 500000;
TIME_OPERATION(size, runInsert(size));
TIME_OPERATION(size, runAdd(size));

}

void runInsert(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.insert(0, i);
}

}

void runAdd(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.add(i);
}

}

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)
› In addition to analyzing the code and predicting number of writes needed, we can also time

the code using our Stanford 106B test system.
› Check the code bundle for class today for runnable version!

/* * * * * * Test Cases * * * * * */
PROVIDED_TEST("Timing comparison")
{

int size = 500000;
TIME_OPERATION(size, runInsert(size));
TIME_OPERATION(size, runAdd(size));

}

void runInsert(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.insert(0, i);
}

}

void runAdd(int size)
{

Vector<int> v;
for (int i = 0; i < size; i++) {

v.add(i);
}

}

Your turn: Vector performance

 Answer: (D) Something else! (about 50x)

› Number of times a number is written in a box:

• OPTION 1:

– First loop iteration: 1 write

– Next loop iteration: 2 writes … continued…

– Formula for sum of numbers 1 to N = (N * (N + 1)) / 2

– (don’t worry if you don’t know this formula, we only
expected a ballpark estimate)

– 100 * (100 + 1) / 2 = 10,100 / 2 = 5,050

• OPTION 2:

– First loop iteration: 1 write

– Next loop iteration: 1 write … continued…

– 100

Big-O

 Big-O analysis in computer science is a way of counting
the number of “steps” needed to complete a task

› Doesn’t really consider how “big” each step is

› Doesn’t consider how fast the computer’s CPU or other
hardware components are

› Doesn’t involve any actual measurement of the time
elapsed for any real code in any way

 But despite all that, really useful for making broad
comparisons between different approaches

Efficiency as a virtue?

 In computer science, we tend to obsess about
efficiency, but it’s worth taking a step back and asking
ourselves, is efficiency always a virtue?

› Racing to be first to the finish line, but with an answer
that’s wrong, isn’t helpful!

› That might seem obvious, but it happens *all the time*
in real tech products

Google image search

Another example…

The danger of a cheap solution: Twitter cropping

 In the summer of
2020, Twitter
users noticed
something
strange about
Twitter’s new
photo cropping
algorithm

 Given a too-tall
image, it selects
which part to
show

 It picked the
Senator
McConnell (the
white man), not
President
Obama

Maybe it just
chooses the top

of the photo?

The danger of a cheap solution: Twitter cropping

 In the summer of
2020, Twitter users
noticed something
strange about
Twitter’s new
photo cropping
algorithm

 Given a too-tall
image, it selects
which part to show

 It picked the
Senator McConnell
(the white man),
not President
Obama

Nope! It still
happens when

Obama is on top!

Efficiency as a virtue?

 In each of these cases, companies chose an algorithm
that would be most efficient, but came up with answers
that were “wrong” (problematic) in ways that are
significant for society

 How can we balance cost (which is what efficiency is
really about in capitalism) with correctness and justice
for society?

› Reflect on this in your Assignment 2!

