Programming Abstractions
 CS106B

Cynthia Bailey Lee
Julie Zelenski

Today's Topics:

- Contrasting performance of 3 recursive algorithms
- Quantifying algorithm performance with Big-O analysis
- Getting a sense of scale in Big-O analysis

Binary Search

AN ELEGANT SOLUTION TO THE PROBLEM OF TOO MUCH DATA

Does this list of numbers contain X?

The question we're trying to answer is, given a list of numbers, does this list contain some particular value, or not? For convenience, we have kept our list sorted.

How long does it take us to find a number we are looking for?

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2	7	8	13	25	29	33	51	89	90	95

Does this list of numbers contain X?

The question we're trying to answer is, given a list of numbers, does this list contain some particular value, or not? For convenience, we have kept our list sorted.

How long does it take us to find a number we are looking for?

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2	7	8	13	25	29	33	51	89	90	95

If you start at the front and proceed forward, each item you examine rules out 1 item

Does this list of numbers contain X?

The question we're trying to answer is, given a list of numbers, does this list contain some particular value, or not? For convenience, we have kept our list sorted.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2	7	8	13	25	29	33	51	89	90	95

If instead we jump right to the middle, one of three things can happen:

1. The middle one happens to be the number we were looking for, yay!
2. We realize we went too far
3. We realize we didn't go far enough

Does this list of numbers contain X?

The question we're trying to answer is, given a list of numbers, does this list contain some particular value, or not? For convenience, we have kept our list sorted.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
2	7	8	13	25	29	33	51	89	90	95

If instead we jump right to the middle, one of three things can happen:

1. The middle one happens to be the number we were looking for, yay!
2. We realize we went too far
3. We realize we didn't go far enough

Ruling out HALF the options in one step is so much faster than only ruling out one!

Binary search

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Let's say the answer was case 3, "we didn't go far enough"

- We ruled out the entire first half, and now only have the second half to search
- We could start at the front of the second half and proceed forward checking each item one at a time...

Binary search

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Let's say the answer was case 3, "we didn't go far enough"

- We ruled out the entire first half, and now only have the second half to search
- We could start at the front of the second half and proceed forward checking each item one at a time... but why do that when we know we have a better way?

Jump right to the middle of the region to search

Binary search

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Let's say the answer was case 3, "we didn't go far enough"

- We ruled out the ent fir alf, and now only have the second half
- We cotr forward RECURSION! cond half and proceed that w atime... but why do

Jump righ

Binary Search pseudocode

- We'll write the real C++ code together on Friday, but here's the outline/pseudocode of how it works:

```
bool binarySearch(Vector<int>& data, int key)
{
    if (data.size() == 0) {
        return false;
    }
    if (key == data[midpoint]) {
        return true;
    } else if (key < data[midpoint]) {
        return binarySearch(data[first half only], key);
    } else {
        return binarySearch(data[second half only], key);
    }
}
```


The Fibonacci Sequence

MATH NERD REJOICING INTENSIFIES

Fibonacci in nature

Fibonacci

$$
0, \quad 1, \quad 1, \quad 2, \quad 3, \quad 5, \quad 8, \quad 13,21,34,55,89,
$$

Fibonacci

Fibonacci

```
int fib(int n)
{
    if (n == 0) {
    return 0;
    } else if (n == 1) N=1 N=0
        return 1;
    } else {
        return fib(n - 1) + fib(n - 2);
    }
}
```

Work is duplicated throughout the call tree

- $\quad \mathrm{fib}(2)$ is calculated 3 separate times when calculating fib(5)!
- 15 function calls in total for fib(5)!

Fibonacci

How many times would we calculate fib(2) while calculating fib(6)?
See if you can just "read" it off the chart above.
A. 4 times
B. 5 times
C. 6 times
D. Other/none/more

Fibonacci

\mathbf{N}	fib(N)	\# of calls to fib(2)
2	1	1
3	2	1
4	3	2
5	5	3
6	8	
7	13	
8	21	
9	34	
10	55	

Efficiency of naïve Fibonacci implementation

When we added 1 to the input N , the number of times we had to calculate fib(2) nearly doubled ($\sim 1.6^{\star}$ times)

- Ouch!
* This number is called the "Golden Ratio" in math—cool!

Goal: predict how much time it will take to compute for arbitrary input N .
Calculation: "approximately" (1.6) ${ }^{\text {N }}$

Big-O Performance Analysis

A WAY TO COMPARE THE NUMBER OF STEPS TO RUN THESE FUNCTIONS

Big-O analysis in computer science

(e)The Stanford libcs106 library, Fall Quarter 2021

```
#include "vector.h"
```


class Vector<ValueType>

This class stores an ordered list of values similar to an array, 掺 supports traditional array selection 1 square brackets, as well as inserting and removing elem hits. Operations that access elements by it in $\mathrm{O}(1)$ time. Operations, such as insert and remove, hat must rearrange elements run in $\mathrm{O}(\mathrm{N})$ tim

Big-O analysis in computer science

WikipediA
The Free Encyclopedia

Main page
Contents
Featured content
Current events Random article Donate to Wikipedia Wikipedia store

Interaction
Help
About Wikipedia Community portal Recent changes Contact page

Tools

What links here Related changes Upload file Special pages Permanent link

Binary search algo	Worst-case performance Best-case performance	$\begin{aligned} & O(\log n) \\ & O(1) \end{aligned}$
From Wikipedia, the free encyclopedia (Redirected from Binary search)		
This article is about searching a fi In computer science, binary search,	Average performance	$O(\log n)$
is a search algorithm that finds the po target value to the middle element of	Worst-case space	$O(1)$
and the search continues on the rema empty, the target is not in the array.	complexity	

Binary search runs in at worst logarithmic time, making $O(\log n)$ comparisons, where n is the number of elements in the array, the O is Big O notation, and log is the logarithm. Binary search takes constant $(O(1))$ space, meaning that the space taken by the algorithm is the same for any number of elements in the array. ${ }^{[6]}$ Although specialized data structures designed for fast searching - such as hash tables-can be searched more efficiently, binary search applies to a wider range of problems.

Although the idea is simple, implementing binary search correctly requires attention to some subtleties about its exit conditions and midpoint calculation.

There are numerous variations of binary search. In particular, fractional cascading speeds up binary searches for the same value in multiple arrays, efficiently solving a series of search problems in computational geometry and numerous other fields. Exponential search extends binary search to unbounded lists. The binary search tree and B-tree data

Binary search algorithm

Visualization of the binary search algorithm where 7 is the target value.

Formal definition of big-0

We say a function $f(n)$ is "big-O" of another function $g(n)$ (written " $f(n)$ is $\mathrm{O}(g(n))$ ") if and only if there exist positive constants c and n_{0} such that

$$
f(n) \leq c \cdot g(n) \text { for all } n \geq n_{0} .
$$

Before we start, let's get introduced

Before we start, let's get introduced

Lets say I want to meet each of you today with a handshake and you tell me your name...
How many introductions need to happen?

But do I need to shake hands with myself, or tell myself my name?
$\mathrm{N}-1$ introductions

Putting this in Big-O terms

Big-O is a way of categorizing amount of work to be done in general terms, with a focus on:

- Rate of growth as a function of the problem size N
- What that rate looks like on the horizon (i.e., for large N)

Therefore, we don't really care about an insignificant ± 1

Putting this in Big-O terms

For the first handshake problem, the rate N is important and the -1 constant is not, so $\mathbf{N} \mathbf{- 1}$ introductions becomes:

$$
\mathrm{O}(\mathrm{~N}-1)
$$

Similarly, if we said that each introduction takes $\mathbf{3}$ seconds, the amount of

$$
O(3 N-3)
$$

Before we start, let's get introduced

What if I not only want you to be introduced to me, but to each other? Now how many introductions? \mathbf{N}^{2}

Before we start, let's get introduced

What if I not only want you to be introduced to me, but to each other? Now how many introductions? $\quad \mathbf{N}^{2}-\mathbf{2 N}+\mathbf{1}$

Putting this in Big-O terms

For the second handshake problem, the introductions was $\mathbf{N}^{2}-\mathbf{N}$:

$$
O\left(\quad N^{2}-2 N+1\right)
$$

But wait, didn't we just say that a term of $+/-\mathrm{N}$ was important?
For Big-O, we only care about the largest term of the polynomial

Big-O and Binary Search

SPOILER: FAST!!

Binary search

2	7	8	13	25	29	33	51	89	90	95

Jump right to the middle of the region to search, then repeat this process of roughly cutting the array in half again and again until we either find the item or (worst case) cut it down to nothing.

Worst case cost is number of times we can divide length in half:

$$
O\left(\log _{2} N\right)
$$

Putting it all together

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64			2.4 s
7	128			Easy!
8	256			
9	512			
10	1,024			
30	2,700,000,000			

nationalatlas.oov
STATES AND CAPITALS

Two tiny little updates

Imagine we approve statehood for US territory Puerto Rico

- Add San Juan, the capital city

Also add Washington, DC

This work has been released into the public domain by its author, Madden. This applies worldwide.

Now $5 \underline{22}$ capital cities instead of $\underline{50}$

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128			194 YEA
8	256			
9	512			
10	1,024			
30	2,700,000,000			

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256		$3.59 E+21$ YEARS	
9	512			
10	1,024			
30	2,700,000,000			

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256		$3,590,000,000,000,000,000,000$ YEARS	
9	512			
10	1,024			
30	2,700,000,000			

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16×10^{77}
9	512		For comparison: there are about 10E +80 atoms in the universe. No big deal.	
10	1,024			
30	2,700,000,000			

$\log _{2} n$	\boldsymbol{n}	$\boldsymbol{n} \log _{\mathbf{2}} n$	$\boldsymbol{n}^{\mathbf{2}}$	$\mathbf{2}^{\boldsymbol{n}}$
$\mathbf{2}$	$\mathbf{4}$	8	16	16
3	$\mathbf{8}$	24	64	256
4	$\mathbf{1 6}$	64	256	65,536
5	$\mathbf{3 2}$	160	1,024	$4,294,967,296$
6	$\mathbf{6 4}$	384	4,096	1.84×10^{19}
$\mathbf{7}$	$\mathbf{1 2 8}$	896	16,384	3.40×10^{38}
8	$\mathbf{2 5 6}$	2,048	65,536	1.16×10^{77}
9	$\mathbf{5 1 2}$	4,608	262,144	1.34×10^{154}
10	$\mathbf{1 , 0 2 4}$			$1.42 \mathrm{E}+137$ YEARS
30	$\mathbf{2 , 7 0 0 , 0 0 0 , 0 0 0}$			

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16×10^{77}
9	512	4,608	262,144	1.34×10^{154}
10	1,024	$\begin{array}{r} 10,240 \\ (.000003 \mathrm{~s}) \\ \hline \end{array}$	$\begin{array}{r} 1,048,576 \\ (.0003 \mathrm{~s}) \\ \hline \end{array}$	1.80×10^{308}
30	2,700,000,000	$\begin{array}{r} 84,591,843,105 \\ (28 \mathrm{~s}) \end{array}$	7,290,000,000,000,000, 000 (77 years)	LOL

$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
2	4	8	16	16
3	8	24	64	256
4	16	64	256	65,536
5	32	160	1,024	4,294,967,296
6	64	384	4,096	1.84×10^{19}
7	128	896	16,384	3.40×10^{38}
8	256	2,048	65,536	1.16×10^{77}
9	512	4,608	262,144	1.34×10^{154}
10	1,024	$\begin{array}{r} 10,240 \\ (.000003 \mathrm{~s}) \\ \hline \end{array}$	$\begin{array}{r} 1,048,576 \\ (.0003 \mathrm{~s}) \\ \hline \end{array}$	1.80×10^{308}
31	2,700,000,000	$\begin{array}{r} 84,591,843,105 \\ (28 \mathrm{~s}) \end{array}$	7,290,000,000,000,000, 000 (77 years)	$\begin{aligned} & 1.962227 x \\ & 10^{812,780,998} \end{aligned}$

	$\log _{2} n$	n	$n \log _{2} n$	n^{2}	2^{n}
	2	4	8	16	16
	3	8	24	64	256
	4	16	64	256	65,536
	5	32	160	1,024	4,294,967,296
	6	64	384	4,096	1.84×10^{19}
	7	128	896	16,384	3.40×10^{38}
	8	256	2,048	65,536	1.16×10^{77}
	9	512	4,608	262,144	1.34×10^{154}
2^{n} is clearly infeasible, but look at $\log _{2} n$ —only a tiny fraction of a second!				$\begin{array}{r} 1,048,576 \\ (.0003 \mathrm{~s}) \\ \hline \end{array}$	1.80×10^{308}
	30	2,700,000,000	$\begin{array}{r} , 591,843,105 \\ (28 \mathrm{~s}) \end{array}$	$\begin{array}{r} 7,290,000,000,000,000 \\ 000 \text { (77 years) } \end{array}$	$\begin{aligned} & 1.962227 x \\ & 10^{812,780,998} \end{aligned}$

In Conclusion

- NOT worth doing: Optimization of your code that just trims a bit , Like that +/-1 handshake-we don't need to worry ourselves about it! , Just write clean, easy-to-read code!!!!!
- MAY be worth doing: Optimization of your code that changes Big-O
, If performance of a particular function is important, focus on this!
, (but if performance of the function is not very important, for example it will only run on small inputs, focus on just writing clean, easy-to-read code!!)
- (Also remember that efficiency is not necessarily a virtue-first and foremost focus on correctness, both technical and ethical/moral/societal justice)

