
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics:

 Contrasting performance of 3 recursive algorithms

 Quantifying algorithm performance with Big-O analysis

 Getting a sense of scale in Big-O analysis

2

Binary Search

A N E L E G A N T S O L U T I O N T O
T H E P R O B L E M O F T O O M U C H

D A T A

Current issue in
computer science:
we have loads of
data! Once we have
all this data, how do
we find anything?

Does this list of numbers contain X?

How long does it take us to find a number we are
looking for?

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

Does this list of numbers contain X?

How long does it take us to find a number we are
looking for?

If you start at the front and proceed forward, each item
you examine rules out 1 item

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

Does this list of numbers contain X?

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

Does this list of numbers contain X?

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

Ruling out HALF the options in one step is so much
faster than only ruling out one!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

Binary search

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the
second half to search

• We could start at the front of the second half and proceed
forward checking each item one at a time…

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the
second half to search

• We could start at the front of the second half and proceed
forward checking each item one at a time… but why do
that when we know we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the
second half to search

• We could start at the front of the second half and proceed
forward checking each item one at a time… but why do
that when we know we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

RECURSION!!

Binary Search pseudocode
 We’ll write the real C++ code together on Friday, but here’s the outline/pseudocode of

how it works:

bool binarySearch(Vector<int>& data, int key)
{

if (data.size() == 0) {
return false;

}
if (key == data[midpoint]) {

return true;
} else if (key < data[midpoint]) {

return binarySearch(data[first half only], key);
} else {

return binarySearch(data[second half only], key);
}

}

The Fibonacci Sequence

* M A T H N E R D R E J O I C I N G
I N T E N S I F I E S *

Fibonacci in nature

T
h

es
e

fi
le

s
a

re
, r

es
p

ec
ti

ve
ly

: p
u

b
lic

 d
o

m
a

in
 (

h
u

rr
ic

a
n

e)
 a

n
d

 li
ce

n
se

d
 u

n
d

er
 t

h
e

C
re

a
ti

ve

C
o

m
m

o
n

s
A

tt
ri

b
u

ti
o

n
 2

.0
 G

en
er

ic
lic

en
se

 (
fi

b
o

n
a

cc
ia

n
d

 fe
rn

).

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.0/deed.en

Fibonacci

This image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Golden_spiral_in_rectangles.png

0 1 2 3 4 5 6 7 8 9 10 11

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Golden_spiral_in_rectangles.png

Fibonacci

This image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Golden_spiral_in_rectangles.png

0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 2 3 5 8 13 21 34 55 89

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Golden_spiral_in_rectangles.png

Fibonacci
int fib(int n)

{

if (n == 0) {

return 0;

} else if (n == 1) {

return 1;

} else {

return fib(n – 1) + fib(n – 2);

}

}

Work is duplicated throughout the call tree

 fib(2) is calculated 3 separate times when calculating fib(5)!

 15 function calls in total for fib(5)!

N=5

N=4 N=3

N=2

N=1 N=0

N=1
N=3

N=2

N=1 N=0

N=1

N=2

N=1 N=0

Fibonacci

How many times would we calculate fib(2) while calculating fib(6)?
See if you can just “read” it off the chart above.

A. 4 times

B. 5 times

C. 6 times

D. Other/none/more

fib(2) is calculated 3
separate times when
calculating fib(5)!

N=5

N=4 N=3

N=2

N=1 N=0

N=1
N=3

N=2

N=1 N=0

N=1

N=2

N=1 N=0

Fibonacci

N fib(N)
of calls to

fib(2)

2 1 1

3 2 1

4 3 2

5 5 3

6 8

7 13

8 21

9 34

10 55

N=5

N=4 N=3

N=2

N=1 N=0

N=1
N=3

N=2

N=1 N=0

N=1

N=2

N=1 N=0

Efficiency of naïve Fibonacci implementation

When we added 1 to the input N, the number of times we had to
calculate fib(2) nearly doubled (~1.6* times)

 Ouch!

Goal: predict how much time it will take to compute for
arbitrary input N.

Calculation: “approximately” (1.6)N

* This number is called the “Golden Ratio” in math—cool!

Big-O Performance
Analysis

A W A Y T O C O M P A R E T H E
N U M B E R O F S T E P S T O R U N

T H E S E F U N C T I O N S

Big-O analysis in computer science

Big-O analysis in computer science

Formal definition of big-O

We say a function 𝑓 𝑛 is “big-O” of another function 𝑔 𝑛
(written “𝑓 𝑛 is O(𝑔 𝑛)”)

if and only if

there exist positive constants 𝑐 and 𝑛0 such that

𝑓 𝑛 ≤ 𝑐 ∙ 𝑔(𝑛) for all 𝑛 ≥ 𝑛0.

Before we start, let’s get introduced

25

Before we start, let’s get introduced

Lets say I want to meet each of you today with a handshake and you tell me
your name…

How many introductions need to happen?

There are N people in the room including me

But do I need to shake hands with myself, or tell myself my name?

N-1 introductions

26

😊 😊 😊 😊 😊 😊 😊 😊 Me

Me

Putting this in Big-O terms

Big-O is a way of categorizing amount of work to be done in
general terms, with a focus on:

 Rate of growth as a function of the problem size N

 What that rate looks like on the horizon (i.e., for large N)

Therefore, we don’t really care about an insignificant ±1

27

😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊 😊
M
e

Putting this in Big-O terms

For the first handshake problem, the rate N is important and the -1 constant
is not, so N – 1 introductions becomes:

O(N)

Similarly, if we said that each introduction takes 3 seconds, the amount of
time is 3(N – 1) = 3N – 3, but we disregard the constant 3s:

O(N)

28

-1

- 33

Before we start, let’s get introduced

What if I not only want you to be introduced to me, but to each other?

Now how many introductions?

29

😊 😊 😊 😊 😊 😊 😊 😊 Me

😊

😊

😊

😊

😊

😊

😊

😊

Me

N2

N

Before we start, let’s get introduced

What if I not only want you to be introduced to me, but to each other?

Now how many introductions?

30

N2(N - 1)2N2 - 2N + 1

N

Putting this in Big-O terms

For the second handshake problem, the introductions was N2 - N:

O(N2)

But wait, didn’t we just say that a term of +/- N was important?

For Big-O, we only care about the largest term of the polynomial

31

- 2N + 1

Big-O and Binary Search

S P O I L E R : F A S T ! !

Binary search

Jump right to the middle of the region to search, then repeat
this process of roughly cutting the array in half again and
again until we either find the item or (worst case) cut it
down to nothing.

Worst case cost is number of times we can divide length in half:

𝑂(log2𝑁)

2 7 8 13 25 29 33 51 89 90 95

Putting it all together

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64

7 128

8 256

9 512

10 1,024

30 2,700,000,000

Binary search Handshake #1 Handshake #2

Naïve
Recursive
Fibonacci
(O(1.6n))

MANY important
optimization and
other problems

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64

7 128

8 256

9 512

10 1,024

30 2,700,000,000

2.4s

Easy!

Traveling Salesperson Problem:
We have a bunch of cities to visit. In what order should
we visit them to minimize total travel distance?

Traveling Salesperson Problem:
We have a bunch of cities to visit. In what order should
we visit them to minimize total travel distance?

Exhaustively try all orderings: O(n!)
Use current best known algorithm: O(n22n)
Maybe we could invent an algorithm that fits in our
rightmost column: O(2n)

So let’s say we come up with a way to solve
Traveling Salesperson Problem in O(2n).

It would take 4 days to solve Traveling
Salesperson Problem on 50 state capitals.

Two tiny little updates

Imagine we approve statehood for US
territory Puerto Rico

 Add San Juan, the capital city

Also add Washington, DC

Now 52 capital cities instead of 50

This work has been released into the public domain by its author, Madden.
This applies worldwide.

http://en.wikipedia.org/wiki/en:public_domain
http://commons.wikimedia.org/wiki/User:Madden

For 50 state capitals: ~4 days
With the O(2n) algorithm we invented, it
would take ~__?__ days to solve Traveling
Salesperson problem on 50 state capitals + 2
(DC and San Juan)

A. 6 days
B. 8 days
C. 10 days
D. > 10 days

With the O(2n) algorithm we invented, it would
take ~17 days to solve Traveling Salesperson
problem on 50 state capitals + 2 (DC and San Juan)

Sacramento is not exactly the most interesting or
important city in California (sorry, Sacramento).

What if we add the 12 biggest non-capital cities
in the United States to our map?

With the O(2n) algorithm we invented,
It would take 194 YEARS to solve Traveling
Salesman problem on 64 cities (state capitals +
DC + San Juan + 12 biggest non-capital cities)

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128

8 256

9 512

10 1,024

30 2,700,000,000

194 YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256

9 512

10 1,024

30 2,700,000,000

3.59E+21 YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256

9 512

10 1,024

30 2,700,000,000

3,590,000,000,000,000,000,000
YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512

10 1,024

30 2,700,000,000

For comparison: there are
about 10E+80 atoms in the
universe. No big deal.

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024

30 2,700,000,000

1.42E+137 YEARS

LOL

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

30 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

31 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)
1.962227 x
10812,780,998

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)
1,048,576

(.0003s)
1.80 x 10308

30 2,700,000,000
84,591,843,105

(28s)
7,290,000,000,000,000,

000 (77 years)
1.962227 x
10812,780,998

2n is clearly infeasible, but look at
log2n—only a tiny fraction of a second!

In Conclusion

 NOT worth doing: Optimization of your code that just trims a bit

› Like that +/-1 handshake—we don’t need to worry ourselves about it!

› Just write clean, easy-to-read code!!!!!

 MAY be worth doing: Optimization of your code that changes Big-O

› If performance of a particular function is important, focus on this!

› (but if performance of the function is not very important, for example it will
only run on small inputs, focus on just writing clean, easy-to-read code!!)

 (Also remember that efficiency is not necessarily a virtue—first and foremost
focus on correctness, both technical and ethical/moral/societal justice)

