
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Recursion Week continues!

 Today, two applications of recursion:

› Binary Search (one of the fundamental algorithms of CS)

• We saw the idea of this on Wed, but today we’ll code it up

› Fractals (will help us visualize the order of operations in recursion)

Next time:

 More recursion! It’s Recursion Week!

 Like Shark Week, but more nerdy

Binary Search Refresher

(R E C A L L F R O M W E D N E S D A Y ’ S
L E C T U R E)

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

Binary search (refresher)

Binary search (refresher)

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the
second half to search

• We could start at the front of the second half and proceed
forward checking each item one at a time… but why do
that when we know we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

Binary search (refresher)

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the
second half to search

• We could start at the front of the second half and proceed
forward checking each item one at a time… but why do
that when we know we have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

The question we’re trying to answer is, given a list of numbers, does this list contain
some particular value, or not? For convenience, we have kept our list sorted.

RECURSION!!

Binary Search
Implementation

N O W W E U N D E R S T A N D T H E
A P P R O A C H .

W H A T D O E S T H E C O D E L O O K
L I K E ?

bool binarySearch(Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(Vector<int>& data, int key, int start, int end) {

}

Recursive Function Design Tip: Wrapper function

 When we want to write a recursive function that needs more book-keeping
data passed around than an outsider user would want to worry about, do
this:

1. Write the function as you need to for correctness, using any extra book-
keeping parameters you like, in whatever way you like.

2. Make a second function that the outside world sees, using only the minimum
number of parameters, and have it do nothing but call the recursive one.

 Called a “wrapper” function because it’s like pretty outer packaging.

bool binarySearch(Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(Vector<int>& data, int key, int start, int end) {

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, _________, _________);

} else {

return binarySearch(data, key, _________, _________);

}

}

Your Turn:
What goes on the blanks below, to

divide the remaining searchable region
of our vector in half?

bool binarySearch(Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(Vector<int>& data, int key, int start, int end) {

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, _________, _________);

} else {

return binarySearch(data, key, _________, _________);

}

}

bool binarySearch(const Vector<int>& data, int key) {

// want to keep passing same data by reference for efficiency,

// but then how do we cut in half?

return binarySearch(data, key, 0, data.size() - 1); // 2 new params

}

bool binarySearch(const Vector<int>& data, int key, int start, int end) {

if (start > end) {

return false;

}

int mid = (start + end) / 2;

if (key == data[mid]) {

return true;

} else if (key < data[mid]) {

return binarySearch(data, key, start, mid - 1);

} else {

return binarySearch(data, key, mid + 1, end);

}

}

Binary Search performance
Q. We saw the test
take a long time to

run for 1M, but it
reports 0.000 secs.
What’s going on??

Binary Search performance
Q. We saw the test
take a long time to

run for 1M, but it
reports 0.000 secs.
What’s going on??

Answer:
log_2(10K) ~= 13
log_2(100K) ~= 16
log_2(1M) ~= 20

…on a computer that
does billions of operations

per second!

Fractals

P R E T T Y !

Fractals

fractal: A self-similar mathematical set that can
often be drawn as a recurring graphical pattern.

 Smaller instances of the same shape or pattern
occur within the pattern itself.

 When displayed on a computer screen, it can be
possible to infinitely zoom in/out of a fractal.

Example fractals

Sierpinski triangle: equilateral triangle
contains smaller triangles inside it

Koch snowflake: a triangle with smaller
triangles poking out of its sides

Mandelbrot set: circle with
smaller circles on its edge

Coding a fractal

Many fractals are implemented as a function that accepts x/y coordinates, size,
and a level parameter.

 The level is the number of recurrences of the pattern to draw.

Example, Koch snowflake:

• snowflake(window, x, y, size, 1);

• snowflake(window, x, y, size, 2);

• snowflake(window, x, y, size, 3);

Cantor Set

The Cantor Set is a simple fractal that begins with a line segment.

 At each level, the middle third of the segment is removed.

 In the next level, the middle third of each third is removed.

Write a function cantorSet that draws a Cantor Set with a given number of
levels (lines) at a given position/size.

 Place 20 px of vertical space between levels.

Cantor Set solution

Your Turn: In what order does the recursion draw the lines?

(A) (B) (C) (D) (E) other

