
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s topics:

 Recursion Week Fortnight continues!

 Today:

› More recursive backtracking code examples:

• Gift card spending optimization

• Maze solving

2

Code Example #1

G I F T C A R D S P E N D I N G
O P T I M I Z A T I O N

Gift card spending optimization

 You’ve been given a gift card for your
birthday, yay!

 The store has a rule that you must use it in
one trip, and any unused balance is
forfeited

 You’ll be given:
› Set<int> itemsForSale: A set of prices of

items for sale (assume only one of each
item is in stock)

› int giftCardAmt: The amount of the gift
card

 Can you find a collection of items to buy
that will sum to EXACTLY the amount on the
gift card??

 Return:
› bool: true if you can find such a collection,

otherwise false

Gift card spending optimization

 You’ve been given a gift card for your
birthday, yay!

 The store has a rule that you must use it in
one trip, and any unused balance is
forfeited

 You’ll be given:
› int giftCardAmt: The amount of the gift

card
› Set<int> itemsForSale: A set of prices of

items for sale (assume only one of each
item is in stock)

 Task: Can you find a collection of items to
buy that will sum to EXACTLY the amount on
the gift card?

 Return:
› bool: true if you can find such a collection,

otherwise false

Your Turn:
Help me write some test cases
for this function. Come up with
at least one basic correctness
test, and a couple tricky/edge

cases. Submit yours at
pollev.com/cs106b. One test
case per submission, you may

submit multiple times.

Format example:

4, {1, 2, 5} = false

Backtracking template

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Bookmark
this slide!

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

What is success for this problem?

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

What is failure for this problem?

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Overspend/negative balance, or no
items left to choose.

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Overspend/negative balance, or no
items left to choose.

What is “one step” for this problem?

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: Y Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

One
step/decision

Delegate the rest to
recursion

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: Y Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

One
step/decision

If recursion comes back with the answer that no
combination works for this set and the remaining

funds, reconsider our Y on the banana.

What is “one step” in the Gift Card problem?

 We can imagine lining up all the items for sale, and our task is basically to
make a binary yes/no decision for purchasing each item

› The yes’es and no’s can come in any combination, we have to find a
combination that sums to our gift card amount

Items:

$1 $5 $3 $2 $10

Y/N: Y Y/N: ___ Y/N: ___ Y/N: ___ Y/N: ___

One
step/decision

Conclusion: one step/decision has two options to
“loop” over: Y and N (for one item).

Backtracking template: applied to Gift Card
problem

bool backtrackingRecursiveFunction(args) {

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

1. Tentatively “choose” one option

2. if (“explore” with recursive call returns true) return true

3. else That tentative idea didn’t work, so “un-choose” that option,
but don’t return false yet!--let the loop explore the other options before giving up!

› None of the options we tried in the loop worked, so return false

}

Exactly $0 left on card

Overspend/negative balance, or no
items left to choose.

Taking one item, “loop” over Y and N
options for that item (we won’t

actually loop since Y and N are only
two options, a loop is excessive)

If both Y and N options for an item
fail, we’ve exhausted all possibilities,

so return false.

Comparing our
solution and the
design template

Try both Y and N

Code Example #2

S A Y H E L L O A G A I N T O Y O U R
F R I E N D , A S S I G N M E N T 2 M A Z E

19 Backtracking template: applied to Maze problem

› If at the exit, return true (no false base case needed)

› Loop over N, W, E, S directions that are valid moves

1. Choose: add that move to our path

2. Recursively explore from there (maybe return true)

3. Unchoose: remove that move from path

› If no valid move reached end, return false

Comparing our
solution and the
design template

Your Turn: tracing the recursion in DFS maze-solver

Assume that the generateValidMoves function we
use provides the valid moves (as applicable)
sorted in this order: N, W, E, S.

 In which order does the DFS visit the points
marked X and Y?

A. visits X before Y

B. visits Y before X

C. doesn’t visit both X and Y

 In which order does the BFS (like your
homework) visit the points marked X and Y?

A. visits X before Y

B. visits Y before X

C. doesn’t visit both X and Y

X

Y

Your Turn: tracing the recursion in DFS maze-solver

Imagine the recursive call stack as we
push/pop (call/return) in our recursive
function as we solve this maze

 What is the most number of stack
frames on the stack at any point?

A. Equal to the number of cells in the
maze

B. Equal to the number of “forks in the
road” we encounter as we explore

C. Equal to the length of the path at its
longest in our exploration

D. Equal to the length of the final
solution path

Depth-first vs. Breadth-first (DFS vs BFS)

 There’s no one universal winner in terms of efficiency

› We can design a maze that is instantly solvable with BFS, but where DFS
would take a very long time, and vice versa

› DFS heads off boldly in one direction

• If that turns out to be right, very fast!

• If it’s wrong, may take a long time to course correct

 BFS has one key advantage: it is guaranteed to find the shortest path

› DFS just finds any working path (which can sometimes make it faster)

