
Programming Abstractions

Cynthia Bailey Lee
Julie Zelenski

CS106B

Today’s topics:
§ Recursion Week Fortnight comes to its thrilling conclusion!
§ Today:

› Visualizing recursive backtracking as a decision tree
› Applying our recursive backtracking template to new problems
› Theme and variations: state speller code example

§ Admin
› Assign 4 out and due this Friday

• Assignment parade takes a breather, Assign 5 released after diagnostic
› Mid-quarter diagnostic next week

• Any 3-hour block within 24-hour window Tue Oct 26th 5pm - Wed Oct 27th 5pm
• Sample posted on Gradescope later this week

2

Backtracking template

bool backtrackingRecursiveFunction(args) {
› Base case test for success: return true
› Base case test for failure: return false
› Loop over available options for “what to do next”:

1. Tentatively “choose” one option
2. if (“explore” with recursive call returns true) return true
3. else That tentative idea didn’t work, so “un-choose” that option,

but don’t return false yet!--let the loop explore the other options before giving up!
› None of the options we tried in the loop worked, so return false

}

Bookmark
this slide!

One template, many applications
§ Combination lock

› Goal: find combo that unlocks
› Choose/unchoose: {0-9} which digit to extend combo
› Base case: combo is full length, does it open lock?

§ Gift card
› Goal: spend card down to zero
› Choose/unchoose: {yes-no} whether to buy item
› Base cases: no money on gift card, no items left to consider

§ Solve maze
› Goal: exit maze
› Choose/unchoose: {N-S-E-W} which direction to move
› Base case: found exit

Recursive exploration as “decision tree”
§ Count of horizontal branches at each decision point is width

› More branches = more options to choose from
§ Count of vertical levels is depth

› Taller tree = more decisions to make
§ Exponential growth

› If W is count of options and D is count of decisions, exhaustive exploration
of entire tree is O(WD)
• That can be a lot of work…!
• What is impact on performance of larger W? of larger D?

› How much of tree is explored to find a solution? to find all solutions?
• How deep does function call stack get?

Code Example

S T A T E S P E L L E R

State speller
Which words can be spelled out of state postal codes? CO + DE = CODE!

State speller
§ You are given:

› Set<string> state: postal codes AL, CA, FL, …
› Lexicon of English words

§ This first version explores all combos of length n and prints
those that are words

State speller
§ What are some variations we can apply to this code?

› What do we change …
› to print all words of any length
› to build a set of words
› to return count of words
› to prune dead ends (not valid prefix)
› to allow/disallow repeat of postal codes in word

(combos vs permute)
› to stop at first word found, return true/false
› to stop at first word found, return word
› to return longest word found
› and many others…

§ Let's do this together in Qt!!

Summary: Recursive backtracking in practice
§ Identify how problem has recursive, self-similar structure

› Diagram as decision tree, sequence of decisions is path down tree
› Nibble off one decision, recurse on rest
› Each decision progresses to smaller/simpler version of same problem

§ Fit to backtracking template
› Base cases: success and failure
› Choose/explore/unchoose

§ How to model state of exploration
› Update/communicate state into and out of recursive calls
› How to loop/enumerate options

§ Theme and variations
› Print all, count, find one, find all, find optimal

