
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Today’s Topics

Sorting!

1. The warm-ups

 Selection sort

 Bubble sort

 Insertion sort

2. Divide & Conquer!

 Merge sort

› (aka Professor sorting the midterms alphabetically using TAs and SLs)

 Quicksort

› (aka getting students to line up alphabetically to receive their midterm
papers back)

› (yes we always write this one as one word even though all the others are
written as two words, idk why?)

For more,
take

CS161!

Selection Sort
A classic “My First Sorting Algorithm” sorting algorithm

Selection Sort

Compare the best-case and worst-
case costs of this algorithm (the Big-O
characterization of each):

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically.

O(N^2)

void sort(Vector<int>& vec) {
int n = vec.size();
// already-fully-sorted section grows
// 1 at a time from left to right
for (int lh = 0; lh < n; lh++) {

int rh = lh;
// find the min element in the
// entire unsorted section
for (int i = lh + 1; i < n; i++) {

// found new min?
if (vec[i] < vec[rh]) rh = i;

}
// swap min into sorted section
int tmp = vec[lh];
vec[lh] = vec[rh];
vec[rh] = tmp;

}
}

Bubble Sort
It’s not very good, famously so…
https://www.youtube.com/watch?v=k4RRi_ntQc8

(arguably better than Selection Sort though!)

5

https://www.youtube.com/watch?v=k4RRi_ntQc8

Insertion Sort
Another classic “Beginner” sorting algorithm

Insertion Sort

Compare the best-case and worst-
case costs of this algorithm (Big-O
characterization of each):

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically.

void sort(Vector<int>& vec) {
int n = vec.size();
// already-sorted section grows 1 at a
// time from left to right
for (int i = 1; i < n; i++) {

int j = i;
// does this item needs to move
// left to be in order?
while (j > 0 && vec[j-1] > vec[j]) {

// keep swapping this item with
// its left neighbor if it is
// smaller than the left neighbor
int tmp = vec[j-1];
vec[j-1] = vec[j];
vec[j] = tmp;
j--;

}
}

}

Mergesort,
AKA Professor’s Sorting Algorithm
Classic example of the divide & conquer class of algorithms

Preliminary Step:
We need a need to use your Assn 3 binaryMerge()!

Start: you have two piles, each of which is sorted

 Take the overall smallest element (smallest in either
pile) and add that one element to the combined-
sorted pile

 Repeat until the two starting piles are empty and the
combined-sorted pile is complete

 Towards the end, you might end up with one pile already
empty and the other not, so just move from non-empty
pile into combined-sorted pile

Preliminary Step:
We need a need to use your Assn 3 binaryMerge()!

Start: you have two piles, each of which is sorted

 Take the overall smallest element (smallest in
either pile) and add that one element to the
combined-sorted pile

 Repeat until the two starting piles are empty and the
combined-sorted pile is complete

 Towards the end, you might end up with one pile already
empty and the other not, so just move from non-empty
pile into combined-sorted pile

How many
elements

do we
examine to

find the
overall

smallest
element?

How many steps does it take to merge two sorted sub-piles, A and B?
In other words, how long does it take to do the “combine two sorted
piles” algorithm on piles A and B?
(note: |A| means the number of elements in A)

A. O(log(|A|+|B|)) steps

B. O(|A|+|B|) steps

C. O(|A+B|)2 steps

D. O(|A|2 + |B|2)steps

E. Other/none/more than one

Professor’s sorting algorithm:

Stanford CS classes can have more than 500 students! Sorting the
midterms alphabetically to prepare for handing them back is a non-
trivial task. Luckily, I don’t have to do it myself…

1. Find two grad student TAs, give each half of the unsorted midterms

2. Tell the TAs to sort their own pile, then give it back to me

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done!

TA’s sorting algorithm:

Sorting ~250 exams is still a non-trivial task! Luckily, the grad
students don’t have to do it themselves!

1. Find two SLs, give each half of the unsorted midterms

2. Tell the SLs to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give your sorted pile to professor)

SL’s sorting algorithm:

1. Find two sectionees, give each half of the unsorted midterms

2. Tell the students to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give sorted pile to TA)

Sectionee’s sorting algorithm:

1. Find two visiting prospective freshmen, give each half of the unsorted
midterms

2. Tell the profros to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give sorted pile to SL)

Prospective Frosh’s sorting algorithm:

1. By now, the pile only has zero or one exam in it (for the
sake of this example, assume the starting number of exams
makes this true at this point)

2. Done! (give sorted pile to student)

Consider an arbitrarily chosen (generic) particular exam and mentally
track its progress throughout the algorithm.

How many times does your exam pass through the
merge algorithm?

A. 1 time

B. 2 times

C. O(logn) times

D. O(n) times

E. Other/none/more than one

BigO Analysis of Mergesort

Every paper is merged log(n) times

 This is the number of times we can divide the stack of n
papers by 2 before we can’t divide anymore

There are n papers

O(nlogn)

Merge Sort runtime intuition

Merge sort performs O(N) operations on each level. (width)

 Each level splits the data in 2, so there are log2 N levels. (height)

 Product of these = N * log2 N = O(N log N). (area)

 Example: N = 32. Performs ~ log2 32 = 5 levels of N operations each:

32

16

8

4

2

1

width = N

h
e

ig
h

t
=

lo
g 2

N

Professor

TA

SL

Sectionee

…

Profro

Merge Sort

 Compare the best case and worst case of Merge sort:

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically in terms of the structure of the code.

Quicksort
Classic example of the “divide & conquer” class of algorithms

Quicksort

Imagine we want students to line up in alphabetical order to pick up
their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second half, go over there!”

› At this point, we at least have some kind of division based on
ordering, but it’s very crude. Each of the two “over there” groups
is completely unsorted within the group, but...

2. …at least now you have two groups that are each smaller and
easier to sort, so recursively sort each half.

That’s it!*

* ok, actually there are some details…

Quicksort

Imagine we want students to line up in alphabetical order to pick up
their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second half, go over there!”

› At this point, we at least have some kind of division based on
ordering, but it’s very crude. Each of the two “over there” groups
is completely unsorted within the group, but...

2. …at least now you have two groups that are each smaller and
easier to sort, so recursively sort each half.

That’s it!*

* ok, actually there are some details…

Rather than doing the work of finding
the actual median, we just choose an

arbitrary or random element to be the
divider. Say, the first array index of the

group, or randomly select an array
index from the group.

Quicksort

 Consider the best case and worst case of Quicksort (best/tight
characterization in each case)

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically in terms of the structure of the code.

