Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Today’s Topics

Sorting! For more,
1. The warm-ups take
= Selection sort CS161!

= Bubble sort
= |nsertion sort
2. Divide & Conquer!
= Mergesort
> (aka Professor sorting the midterms alphabetically using TAs and SLs)
= Quicksort

> (aka getting students to line up alphabetically to receive their midterm
papers back)

> (yes we always write this one as one word even though all the others are
written as two words, idk why?)

Stanford University

Selection Sort

A classic “My First Sorting Algorithm” sorting algorithm

Stanford University

Selection Sort void sort(Vector<int>& vec) {

int n = vec.size();

for (int 1h = 0; 1h < n; lh++) {

Compare the best-case and worst- ,
int rh = lh;

case costs of this algorithm (the Big-O
characterization of each):

A. Best case =Worst case

for (int i = 1h + 1; i < n; i++) {

B. Best case <Worst case if (vec[i] < vec[rh]) rh = i;
Why? Explain very specifically.)

int tmp = vec[lh];

vec[lh] = vec[rh];
O(N’\2) vec[rh] = tmp;

Stanford University

Bubble Sort

https://www.youtube.com/watch?v=k4RRi_ntQc8

Stanford University

https://www.youtube.com/watch?v=k4RRi_ntQc8

Insertion Sort

Another classic “Beginner” sorting algorithm

Stanford University

Insertion Sort

Compare the best-case and worst-
case costs of this algorithm (Big-O
characterization of each):

A. Best case =Worst case
B. Best case <Worst case
Why? Explain very specifically.

void sort(Vector<int>& vec) {
int n = vec.size();

for (int i = 1; i < n; i++) {
int j = i;

while (7 > @ && vec[j-1] > vec[j]) {

int tmp = vec[j-1];
vec[j-1] = vec[]];
vec[j] = tmp;
J--;
}
}
}

Mergesort,
AKA Professor’s Sorting Algorithm

Classic example of the divide & conquer class of algorithms

Stanford University

Preliminary Step:
We need a need to use your Assn 3 binaryMerge()!

Start: you have two piles, each of which is sorted

Take the overall smallest element (smallest in either
pile) and add that one element to the combined-
sorted pile

Repeat until the two starting piles are empty and the
combined-sorted pile is complete

Stanford University

Preliminary Step:
We need a need to use your Assn 3 binaryMerge()!

Start: you have two piles, each of which is sorted

= Take the overall smallest element (smallest in How many
either pile) and add that one element to the elements
combined-sorted pile do we

= Repeat until the two starting piles are empty and the examine to
combined-sorted pile is complete find the

overall
smallest
element?

Stanford University

How many steps does it take to merge two sorted sub-piles, A and B?

In other words, how long does it take to do the “combine two sorted
piles” algorithm on piles A and B?
(note:|A| means the number of elements inA)

O(log(|A|+|B|)) steps
O(|A|+|B|) steps

O(|A+B|)? steps
O(|A|? + |B|?)steps
Other/none/more than one

mo o w:>

Stanford University

Professor’s sorting algorithm:

Stanford CS classes can have more than 500 students! Sorting the
midterms alphabetically to prepare for handing them back is a non-
trivial task. Luckily, I don’t have to do it myself...

1. Find two grad student TAs, give each half of the unsorted midterms
2. Tell the TAs to sort their own pile, then give it back to me

3. Combine the two pilesinto one sorted pile, using our simple combine
algorithm

4. Donel!

Stanford University

TA’s sorting algorithm:

Sorting ~250 exams is still a non-trivial task! Luckily, the grad
students don’t have to do it themselves!

1. Find two SLs, give each half of the unsorted midterms
2. Tell the SLs to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give your sorted pile to professor)

Stanford University

SL’s sorting algorithm:

1. Find two sectionees, give each half of the unsorted midterms
2. Tell the students to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give sorted pile to TA)

Stanford University

Sectionee’s sorting algorithm:

1. Find two visiting prospective freshmen, give each half of the unsorted
midterms

2. Tell the profros to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine
algorithm

4. Done! (give sorted pile to SL)

Stanford University

Prospective Frosh’s sorting algorithm:

1. By now, the pile only has zero or one exam in it (for the
sake of this example, assume the starting number of exams

makes this true at this point)
2. Done! (give sorted pile to student)

Stanford University

Consider an arbitrarily chosen (generic) particular exam and mentally
track its progress throughout the algorithm.

How many times does your exam pass through the
merge algorithm?

1 time

2 times
O(logn) times
O(n) times

mooOw:>

Other/none/more than one

Stanford University

BigO Analysis of Mergesort

Every paper is merged log(n) times

* Thisisthe number of times we can divide the stack of n
papers by 2 before we can’t divide anymore

There are n papers
O(nlogn)

Stanford University

Merge Sort runtime intuition

Merge sort performs O(N) operations on each level. (width)
= Each level splits the data in 2, so there are log, N levels. (height)
» Product of these=N * log, N=0(N log N). (area)

» Example: N=32. Performs ~ log,32 =5 levels of N operations each:

32 Professor
feg 16 TA
f_? | g SL
Eﬂ || " " " 4 Sectionee
Al COCOEHEOCOEOEeeee =

| 00000000 000000 0000000000000000a0 « 7

width = N Stanford University

Merge Sort

= Compare the best case and worst case of Merge sort:
A. Best case =Worst case
B. Best case <Worst case
Why? Explain very specifically in terms of the structure of the code.

Quicksort

Classic example of the “divide & conquer” class of algorithms

Stanford University

Quicksort

Imagine we want students to line up in alphabetical order to pick up
their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second half, go over there!”

> At this point, we at least have some kind of division based on
ordering, but it’s very crude. Each of the two “over there” groups
is completely unsorted within the group, but...

2. ...atleast now you have two groups that are each smaller and
easier to sort, so recursively sort each half.

That’s it!*

* ok, actually there are some details...

Stanford University

Quicksort

Imagine we want students to line up in alphabetical order to pick up
their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second\alf, go over there!”

> At this point, we at least hawgsome kind of division based on
ordering, but it’s very crude. Ea¢h of the two “over there” groups
is completely unsorted within thée
2. ...atleast now you have two groupsgtiaiz 2ch oo 2 2
easier to sort, so recursively sort eaERREN IR EaNe o1 af-Ri s IR e1 2 o) Rilgle laF=:
the actual median, we just choose an
That’s it!* arbitrary or random element to be the
divider. Say, the first array index of the

* ok, actually there are some details..

group, or randomly select an array
index from the group.

Quicksort

= Considerthe best case and worst case of Quicksort (best/tight
characterization in each case)

A. Best case =Worst case
B. Best case <Worst case
Why? Explain very specifically in terms of the structure of the code.

