Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Classes
> Introduction to classes and object-oriented programming
> Practice making our own classes

Stanford University

Course plan for the next few weeks

We have used many classes (our ADT implementations) made by others:
= Vector, Grid, Stack, Queue, Map, Set, Lexicon, ...

Now let's explore how to make a class of our own.

Stanford University

Classes and Objects

KEY VOCABULARY AND
CONCEPTS

Stanford University

Classes and objects

Class: Allows us to add new types to the language! e
A template for what the type holds and how it works —— Bt

4 V. p.
Object: One instance of a class type , = e rerd

{1 [[
E] - K : b | u_ b |

Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

Abstraction: Separation between concepts and details.

Stanford University

Classes and objects

Class: Allows us to add new types to the language!
A template for what the type holds and how it works —— &=

Object: One instance of a class type

Vector<int> c;

Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

Abstraction: Separation between concepts and details.

Stanford University

Elements of a class

Member variables: State inside each object
= Also called "instance variables" or "fields"
» Each object has a copy of each member

Member functions: Behavior each object can perform
= Also called "methods"
= The method can interact with the data inside that object

Stanford University

Abstraction: Interface vs. code

C++ separates classes into two kinds of code files:

= h: A "header" file containing the interface (declarations)

= Cpp: A "source" file containing definitions (method bodies)
> class Foo => must write both foo.h and foo.cpp

The content of .h files is #included inside .cpp files
= Makes them aware of the class and its members

Stanford University

C++ Class Implementation

HOW TO ACTUALLY DO THIS!

Stanford University

Class declaration (.h)

class ClassName {
public: // in ClassName.h
ClassName(parameters); // constructor

returnType name(parameters); // member functi
returnType name(parameters); // (behaviog~inside

returnType name(parameters); // object)

ea

private:
type _name; // me
type _name; (data inside each object)

er variables

P

} - /

This C++ detail provides protection in
case multiple .cpp files include this .h,
so that its contents won't get
declared twice

IMPORTANT: must put a
semicolon at end of class
declaration

Stanford University

Class example (v1)

// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {

public:
BankAccount(string n, double d); // constructors
BankAccount(string n);

void deposit(double amount); // methods
void withdraw(double amount);

private:
string _name; // each BankAccount object
double _balance; // has a name and balance
¥
#endif

Stanford University

Using objects

// client code in bankmain.cpp
BankAccount bal("Cynthia", 1.25);
bal.deposit(2.00);

bal
__name = "Cynthia"
_balance = 3.25

ba2

BankAccount ba2("Julie", 99.00);

_name = "Julie"
ba2.withdraw(5.00);

_balance = 94.00

An object groups multiple variables together

= Each object contains its own name and balance field inside it
= We can get/set them individually

= Code that uses your objects is called client code

Stanford University

Member function bodies

In ClassName. cpp, we write bodies (definitions) for the member functions

that were declared in the .h file:

#include "ClassName.h"

// member function

returnType ClassName: :methodName(parameters) {
statements;
statements;

= Member functions/constructors can refer to the object's member variables.

Stanford University

Member func diagram

// BankAccount.cpp
void BankAccount::withdraw(double amount) {
if (_balance »>= amount) {

) _balance -= amount; _name "Cynthia" _balance 1.25
} /7 void withdraw(double amount) {
7 if (_balance >= amount) {
7/
, _balance -= amount;
7/
// client program e) }
BankAccount cynth(...);”
BankAccount julie(...)j:
N\
* o 0 N\
cynthia.withdraw(5.00); MJ _name "Julie" _balance 9999
julie.withdraw(5.00); void withdraw(double amount) {
if (_balance >= amount) {
_balance -= amount;
}
}

Constructors

ClassName: :ClassName(parameters) {
statements to initialize the object;

}

Constructor: Initializes state of new objects as they are created.
* noreturn type is specified; implicitly "returns" the new object

= without constructor:
BankAccount ba;
ba. name = "Cynthia";
ba. balance = 1.25; // tedious

= with constructor:

BankAccount ba("Cynthia", 1.25); // better

Stanford University

Private data

private:
type name;

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() {
return _balance;

}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {
_hame = newName;

}

Stanford University

Preconditions

Precondition: Something your code assumes is true at the start of its execution
» Often documented as a comment on the function's header.
= |fviolated, the class often throws an exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {
throw balance;
}
_nhame = name;
_balance = balance;

Stanford University

Bouncing Ball Demo

APPLYING WHAT WE LEARNED
WITH THE BANK CLASS TO A
NEW PROBLEM

Stanford University

Bouncing Ball demo

Write a class Ball that represents a bouncing ball.
» What state (private instance variables) should each ball store?
= window functions: setColor and drawOval

Finish the provided client code to draw many balls in a window.
= Make each ball appear at arandom location.

= Make the balls move at random velocities
and "bounce" if they hit window edges.

Stanford University

Extra Slides

MORE COOL TRICKS WITH C++
CLASSES

Stanford University

Operator overloading (6.2) unary: 4 - ++ -- * &
I ~ new delete

operator overloading: Redefining the binary: + - * | % += -=

behavior of a common operator

in the C++ language. *= /= %= & | && ||
N== = < > K= >=
Syntax: << > =[] ->0,
returnType operator op(parameters); // in the .h file for the class
returnType operator op(parameters) { // in the .cpp file for the class
statements;

}s

» Forexample, for two variables of type Foo, a + b will use the code you write in:
Foo operator +(Foo& a, Foo& b) {
// function body

}

Stanford University

Make objects printable

To make it easy to print your object to cout, overload <<
ostream& operator <<(ostream& out, Type& name) {

statements;
return out;

= ostreamisa base class that represents cout, file output streames, ...

Stanford University

<< overload example

// BankAccount.h
class BankAccount {

}s
// notice operators go OUTSIDE of the class' closing }; brace!
ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {

out << ba.getName() << ": $" << ba.getBalance();
return out;

Stanford University

== overload example

// BankAccount.h
class BankAccount {

s

bool operator ==(const BankAccount& bal,
const BankAccount& ba2);

// BankAccount.cpp
bool operator ==(const BankAccount& bal,
const BankAccount& ba2) {
return bal.getName() == ba2.getName()
&& bal.getBalance() == ba2.getBalance();

Stanford University

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName: :~ClassName() { ...

Destructor: Called when the object is deleted by the program.
» (when the object falls out of {} scope)

» Useful if your object needs to free any memory as it dies.
» delete any pointers stored as private members
» delete[] any arrays stored as private members
> (we haven’t learned about delete yet, that’s in a couple weeks!)

Stanford University

