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Topics:

= Classes
> Introduction to classes and object-oriented programming
> Practice making our own classes
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Course plan for the next few weeks

We have used many classes (our ADT implementations) made by others:
= Vector, Grid, Stack, Queue, Map, Set, Lexicon, ...

Now let's explore how to make a class of our own.
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Classes and Objects

KEY VOCABULARY AND
CONCEPTS
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Classes and objects

Class: Allows us to add new types to the language! e
A template for what the type holds and how it works —— Bt
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Object: One instance of a class type , = e rerd
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Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

Abstraction: Separation between concepts and details.
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Classes and objects

Class: Allows us to add new types to the language!
A template for what the type holds and how it works —— &=

Object: One instance of a class type

Vector<int> c;

Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

Abstraction: Separation between concepts and details.
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Elements of a class

Member variables: State inside each object
= Also called "instance variables" or "fields"
» Each object has a copy of each member

Member functions: Behavior each object can perform
= Also called "methods"
= The method can interact with the data inside that object
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Abstraction: Interface vs. code

C++ separates classes into two kinds of code files:

= h: A "header" file containing the interface (declarations)

= Cpp: A "source" file containing definitions (method bodies)
> class Foo => must write both foo.h and foo.cpp

The content of .h files is #included inside .cpp files
= Makes them aware of the class and its members
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C++ Class Implementation

HOW TO ACTUALLY DO THIS!
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Class declaration (.h)

class ClassName {
public: // in ClassName.h
ClassName(parameters); // constructor

returnType name(parameters); // member functi
returnType name(parameters); // (behaviog~inside

returnType name(parameters); // object)

ea

private:
type _name; // me
type _name; (data inside each object)

er variables

P

} - /

This C++ detail provides protection in
case multiple .cpp files include this .h,
so that its contents won't get
declared twice

IMPORTANT: must put a
semicolon at end of class
declaration
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Class example (v1)

// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {

public:
BankAccount(string n, double d); // constructors
BankAccount(string n);

void deposit(double amount); // methods
void withdraw(double amount);

private:
string _name; // each BankAccount object
double _balance; // has a name and balance
¥
#endif
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Using objects

// client code in bankmain.cpp
BankAccount bal("Cynthia", 1.25);
bal.deposit(2.00);

bal
__name = "Cynthia"
_balance = 3.25

ba2

BankAccount ba2("Julie", 99.00);

_name = "Julie"
ba2.withdraw(5.00);

_balance = 94.00

An object groups multiple variables together

= Each object contains its own name and balance field inside it
= We can get/set them individually

= Code that uses your objects is called client code
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Member function bodies

In ClassName. cpp, we write bodies (definitions) for the member functions

that were declared in the .h file:

#include "ClassName.h"

// member function

returnType ClassName: :methodName(parameters) {
statements;
statements;

= Member functions/constructors can refer to the object's member variables.
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Member func diagram

// BankAccount.cpp
void BankAccount::withdraw(double amount) {
if (_balance »>= amount) {

) _balance -= amount; _name "Cynthia" _balance 1.25
} /7 void withdraw(double amount) {
7 if (_balance >= amount) {
7/
, _balance -= amount;
7/
// client program e ) }
BankAccount cynth(...);”
BankAccount julie(...)j:
N\
* o 0 N\
cynthia.withdraw(5.00); MJ  _name "Julie" _balance 9999
julie.withdraw(5.00); void withdraw(double amount) {
if (_balance >= amount) {
_balance -= amount;
}
}




Constructors

ClassName: :ClassName(parameters) {
statements to initialize the object;

}

Constructor: Initializes state of new objects as they are created.
* noreturn type is specified; implicitly "returns" the new object

= without constructor:
BankAccount ba;
ba. name = "Cynthia";
ba. balance = 1.25; // tedious

= with constructor:

BankAccount ba("Cynthia", 1.25); // better

Stanford University



Private data

private:
type name;

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() {
return _balance;

}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {
_hame = newName;

}
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Preconditions

Precondition: Something your code assumes is true at the start of its execution
» Often documented as a comment on the function's header.
= |fviolated, the class often throws an exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {
throw balance;
}
_nhame = name;
_balance = balance;
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Bouncing Ball Demo

APPLYING WHAT WE LEARNED
WITH THE BANK CLASS TO A
NEW PROBLEM
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Bouncing Ball demo

Write a class Ball that represents a bouncing ball.
» What state (private instance variables) should each ball store?
= window functions: setColor and drawOval

Finish the provided client code to draw many balls in a window.
= Make each ball appear at arandom location.

= Make the balls move at random velocities
and "bounce" if they hit window edges.
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Extra Slides

MORE COOL TRICKS WITH C++
CLASSES
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Operator overloading (6.2) unary: 4 - ++ -- * &
I ~ new delete

operator overloading: Redefining the binary: + - * | % += -=

behavior of a common operator

in the C++ language. *= /= %= & | && ||
N== = < > K= >=
Syntax: << > =[] ->0,
returnType operator op(parameters); // in the .h file for the class
returnType operator op(parameters) { // in the .cpp file for the class
statements;

}s

» Forexample, for two variables of type Foo, a + b will use the code you write in:
Foo operator +(Foo& a, Foo& b) {
// function body

}
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Make objects printable

To make it easy to print your object to cout, overload <<
ostream& operator <<(ostream& out, Type& name) {

statements;
return out;

= ostreamisa base class that represents cout, file output streames, ...
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<< overload example

// BankAccount.h
class BankAccount {

}s
// notice operators go OUTSIDE of the class' closing }; brace!
ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {

out << ba.getName() << ": $" << ba.getBalance();
return out;
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== overload example

// BankAccount.h
class BankAccount {

s

bool operator ==(const BankAccount& bal,
const BankAccount& ba2);

// BankAccount.cpp
bool operator ==(const BankAccount& bal,
const BankAccount& ba2) {
return bal.getName() == ba2.getName()
&& bal.getBalance() == ba2.getBalance();
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Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName: :~ClassName() { ...

Destructor: Called when the object is deleted by the program.
» (when the object falls out of {} scope)

» Useful if your object needs to free any memory as it dies.
» delete any pointers stored as private members
» delete[] any arrays stored as private members
> (we haven’t learned about delete yet, that’s in a couple weeks!)
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