
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Classes

› Introduction to classes and object-oriented programming

› Practice making our own classes

2

Course plan for the next few weeks

We have used many classes (our ADT implementations) made by others:

 Vector, Grid, Stack, Queue, Map, Set, Lexicon, ...

Now let's explore how to make a class of our own.

Classes and Objects

K E Y V O C A B U L A R Y A N D
C O N C E P T S

Classes and objects

 Class: Allows us to add new types to the language!
A template for what the type holds and how it works

 Object: One instance of a class type

 Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

 Abstraction: Separation between concepts and details.

Classes and objects

 Class: Allows us to add new types to the language!
A template for what the type holds and how it works

 Object: One instance of a class type

 Object-oriented programming (OOP): Programs that perform their behavior
as interactions between objects.

 Abstraction: Separation between concepts and details.

vector.h

Vector<int> a;

Vector<int> b;

Vector<int> c;

Elements of a class

Member variables: State inside each object

 Also called "instance variables" or "fields"

 Each object has a copy of each member

Member functions: Behavior each object can perform

 Also called "methods"

 The method can interact with the data inside that object

Abstraction: Interface vs. code

C++ separates classes into two kinds of code files:

 .h: A "header" file containing the interface (declarations)

 .cpp: A "source" file containing definitions (method bodies)

› class Foo => must write both foo.h and foo.cpp

The content of .h files is #included inside .cpp files

 Makes them aware of the class and its members

C++ Class Implementation

H O W T O A C T U A L L Y D O T H I S !

Class declaration (.h)
#ifndef _classname_h

#define _classname_h

class ClassName {

public: // in ClassName.h

ClassName(parameters); // constructor

returnType name(parameters); // member functions

returnType name(parameters); // (behavior inside

returnType name(parameters); // each object)

private:

type _name; // member variables

type _name; // (data inside each object)

};

#endif

IMPORTANT: must put a
semicolon at end of class
declaration

This C++ detail provides protection in
case multiple .cpp files include this .h,
so that its contents won't get
declared twice

Class example (v1)
// BankAccount.h

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {
public:

BankAccount(string n, double d); // constructors
BankAccount(string n);

void deposit(double amount); // methods
void withdraw(double amount);

private:
string _name; // each BankAccount object
double _balance; // has a name and balance

};

#endif

Using objects

// client code in bankmain.cpp
BankAccount ba1("Cynthia", 1.25);
ba1.deposit(2.00);

BankAccount ba2("Julie", 99.00);
ba2.withdraw(5.00);

An object groups multiple variables together
 Each object contains its own name and balance field inside it
 We can get/set them individually
 Code that uses your objects is called client code

_name = "Cynthia"
_balance = 3.25

_name = "Julie"
_balance = 94.00

ba1

ba2

Member function bodies

In ClassName.cpp, we write bodies (definitions) for the member functions
that were declared in the .h file:

#include "ClassName.h"

// member function

returnType ClassName::methodName(parameters) {

statements;

statements;

}

 Member functions/constructors can refer to the object's member variables.

Member func diagram
// BankAccount.cpp
void BankAccount::withdraw(double amount) {

if (_balance >= amount) {
_balance -= amount;

}
}

// client program
BankAccount cynth(...);
BankAccount julie(...);
...
cynthia.withdraw(5.00);

julie.withdraw(5.00);

void withdraw(double amount) {
if (_balance >= amount) {

_balance -= amount;
}

}

_name "Cynthia" _balance 1.25

void withdraw(double amount) {
if (_balance >= amount) {

_balance -= amount;
}

}

_name "Julie" _balance 9999

Constructors
ClassName::ClassName(parameters) {

statements to initialize the object;
}

Constructor: Initializes state of new objects as they are created.
 no return type is specified; implicitly "returns" the new object

 without constructor:

BankAccount ba;
ba._name = "Cynthia";
ba._balance = 1.25; // tedious

 with constructor:

BankAccount ba("Cynthia", 1.25); // better

Private data

private:
type name;

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor")
double BankAccount::getBalance() {

return _balance;
}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {

_name = newName;
}

Preconditions

Precondition: Something your code assumes is true at the start of its execution

 Often documented as a comment on the function's header.

 If violated, the class often throws an exception.

// Initializes a BankAccount with the given state.

// Precondition: balance is non-negative

BankAccount::BankAccount(string name, double balance) {

if (balance < 0) {

throw balance;

}

_name = name;

_balance = balance;

}

Bouncing Ball Demo

A P P L Y I N G W H A T W E L E A R N E D
W I T H T H E B A N K C L A S S T O A

N E W P R O B L E M

Bouncing Ball demo

Write a class Ball that represents a bouncing ball.

 What state (private instance variables) should each ball store?

 window functions: setColor and drawOval

Finish the provided client code to draw many balls in a window.

 Make each ball appear at a random location.

 Make the balls move at random velocities
and "bounce" if they hit window edges.

Extra Slides

M O R E C O O L T R I C K S W I T H C + +
C L A S S E S

Operator overloading (6.2)

operator overloading: Redefining the
behavior of a common operator
in the C++ language.

Syntax:

returnType operator op(parameters); // in the .h file for the class

returnType operator op(parameters) { // in the .cpp file for the class

statements;

};

 For example, for two variables of type Foo, a + b will use the code you write in:

Foo operator +(Foo& a, Foo& b) {

// function body

}

unary: + - ++ -- * &
! ~ new delete

binary: + - * / % += -=
*= /= %= & | && ||
^ == != < > <= >=
<< >> = [] -> () ,

Make objects printable

To make it easy to print your object to cout, overload <<

ostream& operator <<(ostream& out, Type& name) {

statements;

return out;

}

 ostream is a base class that represents cout, file output streams, ...

<< overload example

// BankAccount.h

class BankAccount {

...

};

// notice operators go OUTSIDE of the class' closing }; brace!

ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp

ostream& operator <<(ostream& out, BankAccount& ba) {

out << ba.getName() << ": $" << ba.getBalance();

return out;

}

== overload example

// BankAccount.h
class BankAccount {

...
};

bool operator ==(const BankAccount& ba1,
const BankAccount& ba2);

// BankAccount.cpp
bool operator ==(const BankAccount& ba1,

const BankAccount& ba2) {
return ba1.getName() == ba2.getName()

&& ba1.getBalance() == ba2.getBalance();
}

Destructor (12.3)

// ClassName.h // ClassName.cpp

~ClassName(); ClassName::~ClassName() { ...

Destructor: Called when the object is deleted by the program.

 (when the object falls out of {} scope)

 Useful if your object needs to free any memory as it dies.

› delete any pointers stored as private members

› delete[] any arrays stored as private members

› (we haven’t learned about delete yet, that’s in a couple weeks!)

