Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Friday: Classes, Part 1
> BankAccount class
> Ball class
= Today: Classes, Part 2
> More practice making our own classes!
> This time we will implement one of our ADTs from earlier in the quarter!!
* Asimple Stack ADT with unlimited capacity
> In doing so, we need to learn about:
« C/C++ arrays

« Dynamic memory allocation (this is a huge topic in itself—much of CS107 is
about this)

Stanford University

Stack Implementation

BEHIND THE SCENES TOUR!

Stanford University

Implementing a classic ADT: Stack

Today let's learn how to write a Stack class
= We will implement a stack
» Not quite like the one in Stanford library—for simplicity this only stores int

» The stack will use an array to store its elements

= The capacity will grow as needed push pop, peek
Recall the basic stack operations: top| 3

» push: Add an element to the top. 2

= pop: Remove thetop element. bottom| 1

» peek: Examine the top element. stack

Stanford University

How Vector/Stack works

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

» Typically the array is larger than the data added so far, so that it has some
extra slots in which to put new elements later.

» Qur stack will use the same array-based technique

// Diagram shows the internal state of the Stack class
// after 3 ints are pushed
Stack<int> s;

s.push(42); valve [42 | -5 | 17
s.push(-5); size. 3 capacity 10
s.push(17);

Stanford University

How a Stack works

Inside a Stack (also true of Queue and Vector) is an array storing the elements
you have added.

= Typically the array is larger than the data added so far, so that it has some
extra slots in which to put new elements later.

» Qur stack will use the same array-based technique

To store our Stack,

// Diagram shows the internal state of the we will use a
// after 3 ints are pushed C/C++array.
Stack<int> s;
s-push(42); value | 42 | -5 | 17
s.push(-5); . ,

size 3 capacity 10
s.push(17);

Stanford University

Arrays in C++

BEHIND THE SCENES TOUR!

Stanford University

Two kinds of arrays in C/C++

type name[length];

> A statically allocated (stack-allocated) array; can never be resized.
> Memory does not need to be freed; will be automatically released.

Example: int homeworkGrades[7];

type* name = new type[length];

> Adynamically allocated (AKA heap-allocated) array
> The variable that refers to the array is called a pointer

> The memory allocated for the array must be manually released,
or else the program will have a memory leak

Example: int* homeworkGrades = new int[7];
Stanford University

[Y 7
main() \

Arrays in a memory diagram

int myFunction() { myFunction() .
int x = 5; y:
int y = 3; stackArr:

int stackArr[3];
stackArr[0] = X;
stackArr[1l] = vy;
stackArr[2] = x + Vy;

CO|lWwW |0 | W | uUl
e

return y;

What happens when myFunction()
returns?

Stanford University

Arrays in a memory diagram

int myFunction() {
int x = 5;
int y = 3;
int stackArr[3];
stackArr[0] = X;
stackArr[1l] = vy;
stackArr[2] = x + Vy;

return y; }

What happens when myFunction()
returns?

[Mooy 7\

myFunction’s stack
frame automatically
released

Stanford University

[Y 7
main() \

myFunction() . | 5

. . Stack:
Arrays In a memory dlagram

int myFunction() {

int x = 5;

y: | 3
heapArr: /

int y = 3;

int* heapArr = new int[3];
heapArr[0] = X;

heapArr[1l] = y;

heapArr[2] = x + y;

return y;

What happens when myFunction()
returns?

Stanford University

Arrays in a memory diagram

int myFunction() {
int x = 5;
int y = 3;
int* heapArr = new int[3];
heapArr[0] = X;
heapArr[1l] = y;
heapArr[2] = x + y;

return y;

What happens when myFunction()
returns?

[Mooy 7\

myFunction’s stack
frame automatically
released

Heap array NOT
automatically released! ®

Stanford University

Always a pair: new anddelete

int myFunction() {
int x = 5;
int y = 3;
int* heapArr = new int[3];
heapArr[0] = X;

heapArr[1l] = y;

heapArr[2] = x + y;

delete [] heapArr; // fixed memory leak!
return y;

Stanford University

[Mooy 7\

Always a pair: new anddelete

int myFunction() {

int x = 5; myFunction’s stack
. frame automatically
int y = 3; released

int* heapArr = new int[3];

heapArr[0] = X;

heapArr[1] = y;
PAPr[1] = y; Heap array manually

heapArr[2] = x + y; released by delete []

delete [] heapArr; // fixed leak! E&
return y; Y

Stanford University

[Mooy 7\

Always a pair: new and delete main()

int myFunction() {

int x = 5; myFunction’s stack
frame automatically
released

int y = 3;

int* heapArr = new int[3];

heapArr[0] = X;

heapArr[l] = y; e
heapArr[2] = x + y;

delete [] heapArr; // fixed leak!

return y; \

EENVENEVAUERTELLY
released by delete []

} \
. 6 29
Q: “Why would you want to do that? ’

A: It’s true that there’s no point to using dynamic allocation if

we are just deleting at the end of the function. Choose
a static array instead to automatically release.
But what if we want to return the array?
Stanford University

Always a pair: new anddelete

int* myFunction() {
int x = 5;
int y = 3;
int* heapArr = new int[3];
heapArr[0] = X;
heapArr[1l] = y;
heapArr[2] = x + y;
return heapArr;

// delete [] to be done later!

myFunction’s stack
frame automatica'ty
releasec

Heap array not automatically
released so caller (main) will
releas:: later

Stanford University

Danger in C/C++: uninitialized memory!

type* name = new type[length]; // uninitialized
type* name = new type[length](); // initialized with zeroes

> If () are written after [], all elements are zeroed out (slower but good if needed)
> If () are missing, the elements store uninitialized (“random”/garbage) values

int*
cout
cout

int*
cout
cout

al
<<
<<

a2
<<
<<

= new int[3];
al[o];
al[1];

= new int[3]();
a2[o];
a2[1];

// 2395876
// -197630894

// 0
// @

Stanford University

Destructor (12.3)

// ClassName.h // ClassName.cpp
~ClassName(); ClassName: :~ClassName() { ...

Destructor: Called when the object is deleted by the program
» When the object goes out of {} scope; opposite of a constructor
» (orwhenyou expressly call “delete” on the object, if heap-allocated)

= Useful if your object needs to do anything important as it dies,
such as freeing any array memory used by its fields

Stanford University

#ifndef _arraystack_h
arrayStaCk°h #define _arraystack_h
class ArrayStack {
public:

ArrayStack();
~ArrayStack();

void push(int n);

int pop();

int peek() const;
bool isEmpty() const;

private:
int* _elements;
int _capacity;
int _size;

void checkResize();

}s

#tendif

Stanford University

arraYStaCk.Cpp #include "arraystack.h"
(part 1) ArrayStack: :ArrayStack() {

_elements = new int[10];
_capacity = 10;
_size = 0;

ArrayStack::~ArrayStack() {
delete[] _elements;

bool ArrayStack::isEmpty() const {
return _size == 0;

void ArrayStack::push(int n) {
_elements[_size] = n;
_Size++;

Stanford University

arraystack.cpp (part 2)

int ArrayStack::pop() {

if (isEmpty()) {
throw "Can't pop from an empty stack!";

}

int result = elements[_size - 1];
_elements[_size - 1] = 0;

size--;

return result;

}
int ArrayStack::peek() const {
if (isEmpty()) {
throw "Can't peek from an empty stack!";
}

return _elements[_size - 1];

Stanford University

Resize when out of space

// grows array to twice the capacity if needed
void ArrayStack::checkResize() {
if (_size == _capacity) {

// create bigger array and copy data over

int* bigger = new int[2 * _capacity]();

for (int 1 = 0; i < _capacity; i++) {

bigger[i] = _elements[i];

}

delete[] _elements;

_elements = bigger;

_capacity *= 2;

value | 3 |8 (9|7|5(12|4|8|1|6]|75

size 11 capacity 20

Stanford University

Overflow (extra) slides

FOR THE ADVANCED AND/OR
CURIOUS STUDENT

Stanford University

Shallow copy bug (12.7)

If one stack is assigned to another, they will share one array.
= ArrayStack stackl;
= ArrayStack stack2 = stackl;

A change to one will affect the other. (That's bad!)

stackl

" stack2.pop(); _elementy_

= stackl.push(88); | stack? . value | 42 | -5 | 88
elements size 3 capacity 10

When they fall out of scope, memory could get freed twice (error!)

Stanford University

Deep copy

To correct the shallow copy bug, we must define:

= acopy constructor (constructor that takes a list as a parameter)
ArrayStack(const ArrayStack& stack);

* anassignment operator (overloaded = op between two lists)
ArrayStack& operator =(const ArrayStack& stack);

> in both of these, we will make a deep copy of the array of elements.

Rule of Three: In C++, when you define one of these three items in your class, you
probably should define all three:

= 1) copyconstructor 2)assignmentoperator 3) destructor

Stanford University

Advanced: Forbid copying

One quick fix is to just forbid your objects from being copied.
= Declare a private copy constructor and = operator in the .h file.
= Don't give them any actual definition/body in the .cpp file.

// in arraystack.h

private:
ArrayStack(const ArrayStack& stack);
ArrayStack& operator =(const ArrayStack& stack);

= Now iftheclient tries stack2 = stackl; itwill not compile.
= Solves the shallow copy problem, but restrictive and less usable.

Stanford University

