Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Priority Queue ADT
> Heap data structure implementation
« What are binary trees?
* What are heaps?
* How do we do insert/remove operations on heaps?

Stanford University

Priority Queue

Emergency Department waiting room operates as a priority queue: patients are
sorted according to priority (urgency), not “first come, first serve” (in computer

science, “firstin, first out” or FIFO).

Stanford University

Contents of one element of a Priority Queue

» Individual elements of our priority queue will have two pieces to them:
> An integer indicating the priority of this element

* We will use smaller number means higher priority, but could be done
either way

> A“payload” of whatever the actual element data is
* Examples:

- aclass MedicalRecord that has many fields and is the patient’s
entire medical history

- astring that is the name of a student waiting in the Lair queue (in a
world where Lair is based on urgency of request, rather than FIFO)

- etc.

6 "SooMin" 13 "Diego" 15 "Muhammad" 22 "Sasha"

Two priority queue implementation options

"Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

Unsorted array
= Always insert new element at the end of the array

= Remove by searching entire array for highest-priority item, then removing
it, and (if needed) scooting elements over to fill in the gap

"Sasha" 15 "Muhammad" 13 "Diego" "SooMin"

Sorted array

= Always insert new elements where they go in priority-sorted order, with the
highest-priority item at the end of the array

= Remove by taking the last element of the array Stanford University

Priority queue implementations

Unsorted array

Add is FAST
= Justthrow itinthe array at the back
= 0(1)

Remove/peek is SLOW

» Hard to find item the highest priority item—
could be anywhere

= Might need to scoot over elements to fill gap
= O(N)

"Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported

license. Keyah Cheatum http://commons.wikimedia.org/wiki/File:Messy Room.JPG

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:K_cheat&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Messy_Room.JPG

Priority queue implementations
Sorted array

Add is SLOW

= Need to step through the array to find where item
goes in priority-sorted order

= |f proper placeisin the front/middle, need to scoot
over other elements to make room

= O(N)

Remove/peekis FAST

= Easy to find item you are looking for (last in array)

= No need to scoot over elements when removing last
= 0(1)

"SooMin" "Diego" "Muhammad" 22 "Sasha"

in the public domain.
http://commons.wikimedia.org/wiki/File:Wall_Closet.jpg

Image is

Would be great if we could get the best of both...

Fast add and fast remove/peek

,.;7 L
Fast a

dd _ Fast remove/peek

Stanford University

Binary heap for our priority queue

Instead of storing our priority queue nodes entirely sorted or entirely
unsorted, we will store them partially-sorted.

The partial sorting will still be stored in an array, but it’s best to imagine it
as what we call a “tree” in computer science (computer science trees are
upside-down for some reason "_(V)_/")

Here’s what it might look like: _

/ 6 "SooMin" \

/ 13 "Diego" 22 "Sasha"

15 "Muhammad"

Stanford University

Binary trees

Before we delve into how to construct a binary heap, let’s take a step back and
introduce computer science binary trees generally

Stanford University

A binary tree

“In computer science, a binary tree is a
tree data structure in which each node has
at most two child nodes, usually
distinguished as "left" and "right.

n»

(Thanks, Wikipedia!)

Stanford University

“In computer science, a
binary tree is a tree data
structure in which each node
has at most two child nodes,
usually distinguished as "left"

How many of these are valid binary and "right."””
trees? (Thanks, Wikipedia!)

S S
&ﬁ%@dﬁ

Stanford University

Heaps!

Stanford University

Binary Heaps*

Binary heaps are one kind of binary tree

They have a few special restrictions, in addition to the usual binary tree:

= Must be complete
> No “gaps”—nodes are filled in left-to-right on each level (row) of the tree

= Ordering of data must obey heap property
> Min-heap version: a parent’s priority is always < both its children’s priority
> Max-heap version: a parent’s priority is always = both its children’s priority

* There are other kinds of heaps as well. For example, binomial

i : ! .
heap is an extra-fun one! Stanford University

How many of these could be valid binary heaps?

Stanford University

How many of these are valid min-binary-heaps?

/5\ /5\ *_,..-"'5"'-..,._‘
21 16 7 10 7 10
N\ SN/ N /N
42 8 14 11 B 14 11 21
VN
27 18

Stanford University

Binary heap in an array

Stanford University

Binary heap in an array

= Because of the special constraint that they must be complete, binary
heaps fit nicely into an array

> As we’ll see later, this is not true of some other kinds of tree data
structures, and we’ll use a different approach for those

€0

E:laalﬂdl 35

0

1

2 3 4 5

AN
/\ /\

Stanford University

Two approaches:
Binary heap in an array

Wait, but the homework handout starts storing the elements
at arrayindex 1!

> Either way is ok for the assignment.

> You should understand both ways, so we’re teaching both
ways

€0 |©1 | ©@2|©3| Q4 |O5 | % Q2 €3
/e"\ 0 1 2 3 4 5 6 1-based / \ / \
& e, OR &4 © e e

Heap in an array / \

ep|l@|©@|©@3 |04 |05 'ﬂal 03 84 es g

Fora nodein array index i:
= Q:The parent of that node is found where?
= A:atindex:

A i-2

B. i/2

C. (i-1)/2

D. 2i

Stanford University

Fact summary:
Binary heap in an array

N N
I\ J\ A\ /A

0-based: 1-based: ®© S % &

For tree of height h, array length is 2"-1 For tree of height h, array length is 2"
For a nodein array index i: For a nodein array index i:

= Parentisatarrayindex: (i-1)/2 »= Parentisatarrayindex:i/2

» Leftchildisatarrayindex:2i+1 » Leftchildisatarrayindex: 2i

= Rightchildis at array index: 2i +2 = Rightchildisatarrayindex:2i+1

Stanford University

Binary heap enqueue and dequeue

Stanford University

Binary heap enqueue example (insert 6 + “bubble up”)
Size=8, Capacity=15

’/5\
T 10
N N

18 14 11 21

27

P
T 10

N /N

6 14 11 21

/
27 18

7N
8 10

SN /N

7 14 11 21
N\
27 18

0o 1 2 3 4 5 6 7 9 14
5 7 110118114 |11 21|27 | 6

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 14
517 |10 6 |14 (11|21 |27 | 18

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 . 14
5|16 |10 7 |14 (11|21 |27 | 18

Stanford University

Binary heap dequeue (delete min)

Size=9, Capacity=15

/"““x
/\ /\ e 1 2 3 4 5 6 7 8 9 . 14
14 11 21 21 | 27
27 18

\\\\\ {m

(N f ‘!/

=
B

Stanford University

Binary heap dequeue (delete min + “trickle down”)

5 10
VNEVAN
7 14 11 21
7/ \

Size=9, Capacity=15

27 18

18
TN

6 10

SN /N

7 14 11 21

.f"“‘x.
18 10
NN

7 14 11 21

,-f-”ﬁ“x
7 10
/NN

8 14 11 21

R_7

o 1 2 3 4 5 6 7 8 9 14
5 6 (10| 7 |14 11|21 |27 |18 ?
Size=8, Capacity=15

o 1 2 3 4 5 6 7 8 9 14
18| 6 (10| 7 |14 |11 |21 |27 | 18 ?
Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 14
6 (18 (10| 7 |14 |11 | 21|27 |18 ?
Size=8, Capacity=15

o 1 2 3 4 5 6 7 8 9 14

6 |7 (10|18 |14 |11 |21 |27 |18 | ?

Summary analysis

Comparing our priority queue options

Stanford University

Would be great if we could get the best of both...

Fast add and fast remove/peek

,.;7 L
Fast a

dd _ Fast remove/peek

Stanford University

Review: priority queue implementation options performance

Unsorted array
= |nsert new element in back: O(1)
= Remove by searching list and scooting over: O(N)

Sorted array
= Always insert in sorted order: O(N)

= Remove from back: O(1)

Binary heap /Eu\

= |nsert+ “bubble up”: O(logN)

= Delete + “trickle down”: O(logN /\ /\

€0

’!'2 €3

8y

3 4 5

Stanford University

Final aside on terminology

Stanford University

Aside: Binary Heap, not to be confused with Heap memory!

= The Stack section of memory is a Stack like the ADT
= The Heap section of memory has nothing to do with the Heap structure.

Stack ADT

Stack

Heap data structure

0x0

= Probably just happened to reuse the same word ® Stanford University

ce: http://www.flickr.com/photos/35237093334@N01/409465578/

Author: http://www.flickr.com/people/35237093334@NO01 Peter Kazanjy]

Sour

