
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Priority Queue ADT

› Heap data structure implementation

• What are binary trees?

• What are heaps?

• How do we do insert/remove operations on heaps?

2

Priority Queue
Emergency Department waiting room operates as a priority queue: patients are
sorted according to priority (urgency), not “first come, first serve” (in computer
science, “first in, first out” or FIFO).

Contents of one element of a Priority Queue

 Individual elements of our priority queue will have two pieces to them:

› An integer indicating the priority of this element

• We will use smaller number means higher priority, but could be done
either way

› A “payload” of whatever the actual element data is

• Examples:

– a class MedicalRecord that has many fields and is the patient’s
entire medical history

– a string that is the name of a student waiting in the Lair queue (in a
world where Lair is based on urgency of request, rather than FIFO)

– etc.

4

0

6 "SooMin"

0

13 "Diego"

0

22 "Sasha"

0

15 "Muhammad"

Two priority queue implementation options

Unsorted array

 Always insert new element at the end of the array

 Remove by searching entire array for highest-priority item, then removing
it, and (if needed) scooting elements over to fill in the gap

Sorted array

 Always insert new elements where they go in priority-sorted order, with the
highest-priority item at the end of the array

 Remove by taking the last element of the array

0 1 2 3 4

22 "Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

0 1 2 3 4

22 "Sasha" 15 "Muhammad" 13 "Diego" 6 "SooMin"

Unsorted array

Add is FAST

 Just throw it in the array at the back

 O(1)

Remove/peek is SLOW

 Hard to find item the highest priority item—
could be anywhere

 Might need to scoot over elements to fill gap

 O(N)

Priority queue implementations

T
h

is
 f
il
e

 i
s
 l
ic

e
n

s
e

d
 u

n
d

e
r

th
e

C
re

a
ti
v
e

 C
o
m

m
o

n
s

A
tt

ri
b

u
ti
o

n
-S

h
a

re
 A

li
k
e

 3
.0

 U
n
p

o
rt

e
d

li
c
e

n
s
e

.
K

ey
ah

C
h

ea
tu

m
h

tt
p

:/
/c

o
m

m
o

n
s.

w
ik

im
ed

ia
.o

rg
/w

ik
i/

Fi
le

:M
es

sy
_R

o
o

m
.J

P
G

0 1 2 3 4

22 "Sasha" 6 "SooMin" 15 "Muhammad" 13 "Diego"

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:K_cheat&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Messy_Room.JPG

Sorted array

Add is SLOW

 Need to step through the array to find where item
goes in priority-sorted order

 If proper place is in the front/middle, need to scoot
over other elements to make room

 O(N)

Remove/peek is FAST

 Easy to find item you are looking for (last in array)

 No need to scoot over elements when removing last

 O(1)

Priority queue implementations

Im
ag

e
is

 in
 t

h
e

p
u

b
lic

 d
o

m
ai

n
.

h
tt

p
:/

/c
o

m
m

o
n

s.
w

ik
im

ed
ia

.o
rg

/w
ik

i/
Fi

le
:W

al
l_

C
lo

se
t.

jp
g

0 1 2 3 4

6 "SooMin" 13 "Diego" 15 "Muhammad" 22 "Sasha"

Would be great if we could get the best of both…

Fast add and fast remove/peek

+ =

Fast add Fast remove/peek

Binary heap for our priority queue

 Instead of storing our priority queue nodes entirely sorted or entirely
unsorted, we will store them partially-sorted.

 The partial sorting will still be stored in an array, but it’s best to imagine it
as what we call a “tree” in computer science (computer science trees are
upside-down for some reason ¯_(ツ)_/¯)

 Here’s what it might look like:

9

6 "SooMin"

13 "Diego"

15 "Muhammad"

22 "Sasha"

Binary trees
Before we delve into how to construct a binary heap, let’s take a step back and
introduce computer science binary trees generally

A binary tree

“In computer science, a binary tree is a
tree data structure in which each node has
at most two child nodes, usually
distinguished as "left" and "right."”

(Thanks, Wikipedia!)

How many of these are valid binary
trees?

“In computer science, a
binary tree is a tree data
structure in which each node
has at most two child nodes,
usually distinguished as "left"
and "right."”

(Thanks, Wikipedia!)

Heaps!

Binary Heaps*

Binary heaps are one kind of binary tree

They have a few special restrictions, in addition to the usual binary tree:

 Must be complete

› No “gaps”—nodes are filled in left-to-right on each level (row) of the tree

 Ordering of data must obey heap property

› Min-heap version: a parent’s priority is always ≤ both its children’s priority

› Max-heap version: a parent’s priority is always ≥ both its children’s priority

* There are other kinds of heaps as well. For example, binomial
heap is an extra-fun one!

How many of these could be valid binary heaps?

A. 0-1
B. 2
C. 3

D. 4
E. 5-8

How many of these are valid min-binary-heaps?

Binary heap in an array

Binary heap in an array

 Because of the special constraint that they must be complete, binary
heaps fit nicely into an array

› As we’ll see later, this is not true of some other kinds of tree data
structures, and we’ll use a different approach for those

Two approaches:
Binary heap in an array

Wait, but the homework handout starts storing the elements
at array index 1!

› Either way is ok for the assignment.

› You should understand both ways, so we’re teaching both
ways

OR

0-based

1-based

Heap in an array

For a node in array index i:

 Q: The parent of that node is found where?

 A: at index:

A. i – 2

B. i / 2

C. (i – 1)/2

D. 2i

Fact summary:
Binary heap in an array

For tree of height h, array length is 2h-1

For a node in array index i:

 Parent is at array index: (i – 1)/2

 Left child is at array index: 2i + 1

 Right child is at array index: 2i + 2

For tree of height h, array length is 2h

For a node in array index i:

 Parent is at array index: i /2

 Left child is at array index: 2i

 Right child is at array index: 2i + 1

0-based: 1-based:

Binary heap enqueue and dequeue

Binary heap enqueue example (insert 6 + “bubble up”)
Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 18 14 11 21 27 ? ? … ?

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

6

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 6 14 11 21 27 18 ? … ?

Binary heap dequeue (delete min)

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 … … …

?
618

18

Binary heap dequeue (delete min + “trickle down”)
Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

18 6 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 18 10 7 14 11 21 27 18 ? … ?

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 7 10 18 14 11 21 27 18 ? … ?

Summary analysis
Comparing our priority queue options

Would be great if we could get the best of both…

Fast add and fast remove/peek

+ =

Fast add Fast remove/peek

Review: priority queue implementation options performance

Unsorted array

 Insert new element in back: O(1)

 Remove by searching list and scooting over: O(N)

Sorted array

 Always insert in sorted order: O(N)

 Remove from back: O(1)

Binary heap

 Insert + “bubble up”: O(logN)

 Delete + “trickle down”: O(logN)

Final aside on terminology

 The Stack section of memory is a Stack like the ADT

 The Heap section of memory has nothing to do with the Heap structure.

 Probably just happened to reuse the same word 

Aside: Binary Heap, not to be confused with Heap memory!

Heap

Stack

0x0

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.f
li
c
k
r.

c
o

m
/p

h
o

to
s
/3

5
2

3
7

0
9

3
3

3
4

@
N

0
1

/4
0

9
4

6
5

5
7

8
/

A
u

th
o

r:
 h

tt
p

:/
/w

w
w

.f
li
c
k
r.

c
o

m
/p

e
o

p
le

/3
5

2
3

7
0

9
3

3
3

4
@

N
0
1

 P
e

te
r

K
a

z
a

n
jy

]

=

≠

Stack ADT

Heap data structure

