
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Review: Pointers

 Today: Link Nodes

› LinkNode struct

› Chains of link nodes

› LinkNode operations

2

Pointers

T A K I N G A D E E P E R L O O K A T
T H E S Y N T A X O F T H A T A R R A Y

O N T H E H E A P

Memory is a giant array

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

40

bool kitkat = true;
int candies = 10;

Whenever you declare a
variable, you allocate a
bucket (or more) of memory
for the value of that variable

Each bucket of memory has a
unique address

50123

true

10

Address-of operator &

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4

Whenever you declare a variable, you
allocate a bucket (or more) of memory
for the value of that variable

Each bucket of memory has a unique
address

You can get the value of a variable's
address using the & operator.

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

10

true

Address-of operator &

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4
int* ptrC = &candies;
bool* ptrB = &kitkat;

You can store memory addresses in a
special type of variable called a pointer.
 i.e. A pointer is a variable that holds a memory

address.

You can declare a pointer by writing
(The type of data it points at)*
 e.g. int*, string*

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

true

10

20

4ptrB:

ptrC:

candies:

kitkat:

Dereference operators * and ->

int candies = 10;
bool kitkat = true;
cout << &candies << endl; // 20
cout << &kitkat << endl; // 4
int* ptrC = &candies;
bool* ptrB = &kitkat;

cout<< ptrC << endl; // 20
cout<< *ptrC << endl; // 10

You can follow ("dereference") a pointer
by writing
*variable_name

Remember that if what we find at the
destination is a struct, we dereference
AND access a field of the struct at once
with the struct dereference operator ->

0

38252

4

93402

8

4402

12

5552

16

1952 20
42552

24

683

28

82391

32

23532

36

93042

4050123

10

20

4ptrB:

ptrC:

candies:

kitkat: true

Null Pointer

A S P E C I A L P O I N T E R V A L U E

Null Pointer

 When we want a variable with a pointer type to be “blank,” we set it to be a “null pointer”

 This means it doesn’t point to any valid memory address

 This turns out to be useful if you want a pointer to be shown as in a “waiting” state (waiting to
be set to a real pointer value/memory address)

 Example:

int* myptr = nullptr;

…

if (input > 0) {

myptr = new int[input];

}

…

if (myptr == nullptr) {

cout << "haven't assigned a value to myptr yet!" << endl;

}

Array Performance

L I M I T A T I O N S O F T H E A R R A Y ,
A N D A M O R E F L E X I B L E

A L T E R N A T I V E

Arrays

3

What are arrays good at? What are arrays bad at?

10 7 8
132
121

124
112

834
252

926
073

234
132

645
453

0 1 2 3 4 5 76 8 9

arr:

Array Performance

3 10 7 8

0 1 2 3 4 5 76 8 9

list

What are the most annoying operations on a tightly packed row of
theater seats, or a tightly packed book shelf, etc?

Insertion - O(n)
Deletion - O(n)
Lookup (given index/memory address) - O(1)

Let's brainstorm ways to improve insertion and deletion....

0 0 0 0 0 0

Add to front

3 10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

Before:

What if we were trying to add an element "20" at index 0?

3 10 7 8

0 1 2 3 4 5 76 8 9

After: 720 8 0 0 0 0 0 03 10 7 8

Add to front

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

Wouldn't it be nice if we could just do something like:

1. "Start here instead!"

20

3

2. "Then the next elements are here!"

More operations

Now we add 15 as a new 3rd element, and remove the 7:
Arrows everywhere! (but no scooting over in those array buckets/seats, at least…)

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

20

3

15

More operations

Now we add 15 as a new 3rd element, and remove the 7:
Arrows everywhere! (but no scooting over in those array buckets/seats, at least…)

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9

20

3

15

This is a list of linked nodes!

10 820 3 15

 A list of linked nodes (or a linked list) is composed of interchangeable nodes

 Each element is stored separately from the others (vs contiguously in arrays)

 Elements are chained together to form a one-way sequence using pointers

 Edits are easier than an array in that no “scooting over” is needed!

Linked Nodes

A G R E A T W A Y T O E X E R C I S E
Y O U R P O I N T E R

U N D E R S T A N D I N G

Linked Node Struct

 To enable each bucket of the more flexible array alternative to both hold a value
and tell you where to look for the next value, we need a struct with two fields:

struct LinkNode {
int data;
LinkNode* next;

};

› data: the data being stored (what would be in the array)

› next: a pointer to the next node struct in the sequence (or nullptr if this is the
end of the sequence)

 The result is a chain that looks like this:
data next

10

data next

75 NULL

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node2

data next

10

data next

75 NULLnode1

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // correct answer

node2

data next

10

data next

75 NULLnode1

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // correct answer

node2

data next

10

data next

75 NULLnode1

IMPORTANT: ASSIGNMENT OPERATOR WITH POINTERS
When assigning one pointer to another, we are making
the two pointers point to the same destination. We are
not making the one on the right point to the one on the
left as its destination.

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // correct answer

node2

data next

10

data next

75 NULLnode1

Note: After this point, we don't
really need the pointer variable
named node2 anymore. The node
it points to may be reached via
the variable node1.

HeapStack

Your Turn: finish the code to match the picture

LinkNode* node1 = new LinkNode;
node1->data = 10;
LinkNode* node2 = new LinkNode;
node2->data = 75; // YOUR TURN: complete the code to make picture

node1->next = node2; // correct answer

node2

data next

10

data next

75 NULLnode1

Review/Reminder: the variables
node1 and node2 are local
variables, so they’ll be stored in
the stack part of memory. The
nodes themselves will be stored
in the heap part of memory,
since we got them from new.

FIRST RULE OF LINKED NODE/LISTS CLUB:

DRAW A PICTURE OF LINKED LISTS

Do no attempt to code linked nodes/lists without pictures!

List code example: Draw a picture!

Before:

front->next->next = new LinkNode;

front->next->next->data = 40;

A. After:

B. After:

C. Using next that is nullptr gives an error

D. Other/none/more than one

front

struct LinkNode {
int data;
LinkNode* next;

};

data next

10

data next

20 NULL

front

front

data next

10

data next

40

data next

20 NULL

data next

10

data next

20

data next

40 NULL

List code example: Draw a picture!

Before:

Write code that will put these in the reverse order:

struct LinkNode {
int data;
LinkNode* next;

};

front

data next

10

data next

20

data next

40 NULL

