Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= LinkedList Applications, Algorithms, and Variants

> Using a linked list for a queue Fun fact: linked list
algorithms are a classic

> Tail pointers
> The undo-enqueue operation
> Doubly-linked lists

= Preview of our next topic: Binary Search Trees
> Starting with a dream: binary search in a linked list?
> How our dream provided the inspiration for the BST

technical job interview
question category!

Stanford University

Queue implementation
with a linked list

REAL-WORLD APPLICATION OF
LINKED LISTS

Stanford University

linkedlist.h (for comparison—we will copy this design)

class LinkedList {

public: LinkedList
LinkedList();
~LinkedList(); _front:

void add(int value);
void clear();

int get(int index) const; _size: | O
void insert(int index, int value);
bool isEmpty() const;

void remove(int index); struct LinkNode
void set(int index, int value);
int size() const; data: | O

private: next: ////

ListNode* front;
int _size;

}s

Stanford University

Internal structure is

queueLL.h [Version 1] exactly the same as

LinkedList class.

class QueuelLL { QueuellL

public:
QueuelLL(); .
~QueuelLL (); _front:
void enqueue(int value);
void clear(); _size: | O
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;

struct LinkNode

Public-facing methods 1o
private: are renamed and data:
ListNode* front; : .
; — . curated to provide the next: /
int size; .
}; - usual queue interface.

Stanford University

Queue implemented with a linked list

= Front of the list is the front of the queue
> Need to dequeue from here
> No problem! Unlike array O(N), removing from the front of a linked
listis just O(1)
= Back of the list is the back of the queue
> Need to enqueue to here

> Hmmm...not good. O(N) because we have to traverse in a loop to
the end of the list

data next data next data next
_front: B aE 52
_size: 3 Front of queue Back of queue

Stanford University

Queue implemented with a linked list

= Front of the list is the front of the queue
> Need to dequeue from here

> No problem! Unlike array O(N), removing from SISl -AUSEIMUERERE
list is just O(1) is O(1), it’s just getting
there that takes a long

= Back of the list is the back of the queue

time.

> Need to enqueue to here

> Hmmm...not good. O(N) because we have to traverse in a loop to
the end of the list

data next data next data next
_front: B aE 3
_size: 3 Front of queue Back of queue

Stanford University

Tail Pointers

BONUS FEATURE TO IMPROVE
LINKED LIST PERFORMANCE
FOR APPLICATIONS LIKE
QUEUE

Stanford University

Queue implemented with a linked list with Tail Pointer

= We add a third private member variable to our LinkedList class
» _front enables dequeue in O(1)
» _tail enables enqueuein O(1)
> (_size staysthe same)
> When size = @, frontand tail will be both be nullptr

Front of queue Back of queue
data next data next data next
_front: 15— I >
_tail:
_size: 3

Stanford University

Queue implemented with a linked list with Tail Pointer

= We add a third private member variable to our LinkedList class
» _front enables dequeue in O(1)
» _tail enables enqueuein O(1)
> (_size staysthe same)
When size = @, frontand tail will be both be nullptr

N~

Your Turn: what Front of queue Back of queue
should the value of data next data next data next

tai ‘
~Sph 15 {7 2
_size = 17 |

_size: 3

Stanford University

queueLL.h [Version 2]

class QueueLL { QueueLlL

pUblaﬁéueLL()3. _front: ;Ezj
;g;ju:tzsgae(int value); _tail: ////
Xgiddgzﬁzzézint index); _size: | g
int peek(int index) const;

bool isEmpty() const; struct LinkNode

int size() const;

private: data: L2
ListNode* _front; next: ////
ListNode* _tail; D
int _size; New tail pointer

}; member variable.

Stanford University

Implementing enqueue

// Appends the given value to the end of the list.
void Queuell::enqueue(int value) {

}

» What pointer(s) must be changed to add a node to the end of a list?
» What different cases must we consider?

Front of queue Back of queue
data next data next data next
ot T
_front: } L R =
_tail:
_size: 3

Stanford University

Code for list add() compared to code for enqueue()

// (in linkedlist.cpp)
oid LinkedList::add(int value)
{
if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {
current = current->next;
}
current->next = new ListNode(value);
} .
_size++;

// (in queuelL.cpp)
void Queuell::enqueue(int value)

{
if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);
_tail = _front;
} else {
// adding to the end of an existing list
_tail->next = new ListNode(value);
_tail = _tail->next;
} .
_size++;
}

Stanford University

Code for list add() compared to code for enqueue()

// (in linkedlist.cpp)
oid LinkedList::add(int value)
{
if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {
current = current->next;
}
current->next = new ListNode(value);
} .
_size++;

// (in queuelL.cpp)
void Queuell::enqueue(int value)

{
if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);
_tail = _front;
} else {
// adding to the end of an existing list
_tail->next = new ListNode(value);
_tail = _tail->next;
}
_size++; Don’t need the loop
} anymore—just go

straight to using the
tail pointer.

Stanford University

Implementing an
undo-enqueue operation

FOR THOSE “NEVERMIND,
THIS RAMEN NAGI LINE IS TO
LONG, I’LL GO TO A
DIFFERENT RESTAURANT!”
MOMENTS

Stanford University

queuelLL.h [Version 3]

class QueuelL { Queuell

public:
QueueLL(); front: ;Ezj
~QueuelLL(); -
void enqueue(int value); _tail: ////
void clear(); .
int dequeue(int index); _size: 1 0o

int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

This function would remove the
most-recently-engeued element

private: (similar to pop in a stack).
ListNode* front;
ListNode* tail;

int _size; next: ////
}s

Stanford University

Implementing a prepend operation

void Queuell::undoEnqueue() {

}
= Removes the most-recently-enqueued item.
data next data next data next
_tail:
_size: 3
data next data next
After: _front: " 5 -—-> -17
_tail: -
_size: 2
Stanford University

Options for implementing a prepend operation

= Could just copy our code from LinkedList remove(index), with index set to
size() - 1, butthisis O(N).

» It’s disheartening to see that our new _tail pointer doesn’t help us. ®

= That’s because the node whose next pointer needs to change is the one with
-17, not 2e.

Before: data next data next data next
_front: " 17 y_20 ////
_tail:
_size: 3
After: data next data next
_front: > -17
_tail:
size: [-~ ||

Stanford University

More options for implementing a prepend operation?

= Whatif we add a penultimate-node pointer to our member variables?
» It will point to the second-to-last element in the list.
Before: data next data next data next

front: :Z-: 17 2L /I

_tail:

data next data next

After: our _pen pointer helps| _pen: & /
us get this far...

tail:
...but what about the B
update to _pen? _size: | 2

_size: | 3

\ 4

Stanford University

The Doubly-Linked List
structure

ANOTHER VERY COMMON
BONUS FEATURE TO IMPROVE
LINKED-LIST PERFORMANCE

Stanford University

queueLL.h [Version 3, again] class QueueLL

class QueuelLlL { _front: ;Ezj
0

public:)
QueuelL(); _tail:
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const; struct LinkNode
bool isEmpty() const;
int size() const;
void undoEnqueue();

_size:

data: 0

next: ////

private:
ListNode* front;
ListNode* _tail; This time, instead of changing our
y int _Slze; list class, let’s reconsider the
J

node struct that we’ve been using
all this time.

Stanford University

queuelLL.h [Version 4] class QueueLl

public:)
QueuelL(); _tail:
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);

_size:

class QueuelLlL { _front: ;Ezj
0

int peek(int index) const; struct DoubleLinkNode
bool isEmpty() const;
int size() const; 0
void undoEnqueue(); data:

prev: ,///

private:

ListNode* _front; next: ////
ListNode* tail;

int _size;

}s

Now each node will have two
pointers: a previous and a next.

nford University

Doubly-Linked List

» Benefits:
» Easy access to nodes before your node, when needed for edits
= Drawbacks:

> Linked list already roughly doubles amount of storage needed to hold our
data (compared to array), now doubly-linked list triples it

> More work in every add, remove, insert, etc operation to maintain correct
pointer placements

prev data next prev data next prev data next

- = B =
_front:] /
_tail:

_size: | 3

Stanford University

Implementing an
undo-enqueue operation
(now lets do it)

FOR THOSE “NEVERMIND,
THIS RAMEN NAGI LINE IS TO
LONG, I’LL GO TO A
DIFFERENT RESTAURANT!”
MOMENTS

Stanford University

Implementing a prepend operation

void Queuell::undoEnqueue() {

}...

= What pointer(s) must be changed to remove the node at the the end of a list?
= What different cases must we consider?

prev data next prev data next prev data next

— llill — 17 |20 | 7

_tail: | —

_size: | 3

Stanford University

Implementing a prepend operation

void Queuell: :undoEnqueue() {
if (size() == 0) {
error("Cannot remove from empty queue!");

}

DoublelLinkNode* trash = _tail;
if (size() ==1) {
_tail = _front = nullptr;
} else {
_tail->prev->next = nullptr;
_tail = _tail->prev;
}
delete trash;
_size--;

Stanford University

SWITCHING GEARS!

Preview of our next topic: Binary Search Tree

Stanford University

Binary Search in a Linked
List?

EXPLORING A GOOD IDEA,
FINDING WAY TO MAKE IT
WORK

Stanford University

Recall our beautiful algorithm: binary search!

0 11 |2 [3 |4 |5 |6 |7 |8 |9 [10_
2 7 8 13 25 29 33 51 89 90 95

= How long does it take us to find data in a sorted array?
> Use binary search!
> O(logn): awesome!!

Stanford University

Q. Can we do binary search on a linked list?

A. No.

The nodes are spread all over memory, and we must follow “next”
pointers one at a time to navigate (the treasure hunt).

Therefore cannot jump right to the middle.
Therefore cannot do binary search.
Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work

Stanford University

“What if...?”
The inspiration for Binary Search Trees

= Whatif...

= ...instead of having a _front pointer in our linked list, we had a pointer to
the element we want to look at first in binary search: the exact

median/middle element?
ata next data next data next data next data next data next data next

HE

_median:

_size: 7

= That would make the first step of our binary search really fast/easy!
= What about the next step? (and the front half of our list, lol)
Stanford University

“What if...?”
The inspiration for Binary Search Trees

= What about the next step? (and the front half of our list, lol)

= Well, we could have the middle element point to the middle element of
both the left half and the right half, so the 2"d step of our binary search is
easy/fast too!

data next data next data next data next data next data next

_median:

_size: 7

= Keep doing this until all elements have pointers to the middle of what
remains to their left/right sides...voila! Stanford University

An Idealized Binary Search Tree

= Qurclass will have a pointer to the median element®, and each element has
pointers to the medians of everything to their left and right

> *actually it’s hard to guarantee it will be the exact middle element, more on
this, and lots more about Binary Search Trees, next time!

29
root: /’//'\
(. 43

?/\34 40 S(,

A N
,2 79 1% ZL ﬁ /53 Q?\

44 \
]/ G (0 l§t¢i3ﬁ9/$\g°\ 7’%5’1 53 09 S

_size: | 29

Stanford University

