
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 LinkedList Applications, Algorithms, and Variants

› Using a linked list for a queue

› Tail pointers

› The undo-enqueue operation

› Doubly-linked lists

 Preview of our next topic: Binary Search Trees

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

2

Fun fact: linked list
algorithms are a classic
technical job interview

question category!

Queue implementation
with a linked list

R E A L - W O R L D A P P L I C A T I O N O F
L I N K E D L I S T S

linkedlist.h (for comparison—we will copy this design)

class LinkedList {
public:

LinkedList();
~LinkedList();
void add(int value);
void clear();
int get(int index) const;
void insert(int index, int value);
bool isEmpty() const;
void remove(int index);
void set(int index, int value);
int size() const;

private:
ListNode* _front;
int _size;

};

_front:

_size:

LinkedList

0

struct LinkNode

data:

next:

0

queueLL.h [Version 1]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;

private:
ListNode* _front;
int _size;

};

_front:

_size:

QueueLL

0

Internal structure is
exactly the same as
LinkedList class.

Public-facing methods
are renamed and

curated to provide the
usual queue interface.

struct LinkNode

data:

next:

0

Queue implemented with a linked list

 Front of the list is the front of the queue

› Need to dequeue from here

› No problem! Unlike array O(N), removing from the front of a linked
list is just O(1)

 Back of the list is the back of the queue

› Need to enqueue to here

› Hmmm…not good. O(N) because we have to traverse in a loop to
the end of the list

Front of queue

data next

32

data next

5

data next

-17
_front:

_size: 3 Back of queue

Queue implemented with a linked list

 Front of the list is the front of the queue

› Need to dequeue from here

› No problem! Unlike array O(N), removing from the front of a linked
list is just O(1)

 Back of the list is the back of the queue

› Need to enqueue to here

› Hmmm…not good. O(N) because we have to traverse in a loop to
the end of the list

Front of queue

data next

32

data next

5

data next

-17
_front:

_size: 3 Back of queue

Key insight: actual add
is O(1), it’s just getting
there that takes a long

time.

Tail Pointers

B O N U S F E A T U R E T O I M P R O V E
L I N K E D L I S T P E R F O R M A N C E

F O R A P P L I C A T I O N S L I K E
Q U E U E

Queue implemented with a linked list with Tail Pointer

 We add a third private member variable to our LinkedList class

› _front enables dequeue in O(1)

› _tail enables enqueue in O(1)

› (_size stays the same)

› When _size = 0, _front and _tail will be both be nullptr

Front of queue

data next

32

data next

5

data next

-17
_front:

_tail:

_size: 3

Back of queue

Queue implemented with a linked list with Tail Pointer

 We add a third private member variable to our LinkedList class

› _front enables dequeue in O(1)

› _tail enables enqueue in O(1)

› (_size stays the same)

› When _size = 0, _front and _tail will be both be nullptr

Front of queue

data next

32

data next

5

data next

-17
_front:

_tail:

_size: 3

Back of queueYour Turn: what
should the value of
_tail be when
_size = 1?

queueLL.h [Version 2]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

QueueLL

New tail pointer
member variable.

_front:

_tail:

_size: 0

struct LinkNode

data:

next:

0

Implementing enqueue

// Appends the given value to the end of the list.
void QueueLL::enqueue(int value) {

...
}

 What pointer(s) must be changed to add a node to the end of a list?

 What different cases must we consider?

Front of queue

data next

32

data next

5

data next

-17
_front:

_tail:

_size: 3

Back of queue

Code for list add() compared to code for enqueue()

// (in queueLL.cpp)
void QueueLL::enqueue(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);
_tail = _front;

} else {
// adding to the end of an existing list
_tail->next = new ListNode(value);
_tail = _tail->next;

}
_size++;

}

// (in linkedlist.cpp)
void LinkedList::add(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {

current = current->next;
}
current->next = new ListNode(value);

}
_size++;

}

Code for list add() compared to code for enqueue()

// (in queueLL.cpp)
void QueueLL::enqueue(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);
_tail = _front;

} else {
// adding to the end of an existing list
_tail->next = new ListNode(value);
_tail = _tail->next;

}
_size++;

}

// (in linkedlist.cpp)
void LinkedList::add(int value)
{

if (_front == nullptr) {
// adding to an empty list
_front = new ListNode(value);

} else {
// adding to the end of an existing list
ListNode* current = _front;
while (current->next != nullptr) {

current = current->next;
}
current->next = new ListNode(value);

}
_size++;

}

Don’t need the loop
anymore—just go

straight to using the
tail pointer.

Implementing an
undo-enqueue operation

F O R T H O S E “ N E V E R M I N D ,
T H I S R A M E N N A G I L I N E I S T O

L O N G , I ’ L L G O T O A
D I F F E R E N T R E S T A U R A N T ! ”

M O M E N T S

queueLL.h [Version 3]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

QueueLL

_front:

_tail:

_size: 0

struct LinkNode

data:

next:

0

This function would remove the
most-recently-enqeued element

(similar to pop in a stack).

data next

20

Implementing a prepend operation

void QueueLL::undoEnqueue() {
...

}

 Removes the most-recently-enqueued item.

Before:

After:

data next

5

data next

-17

data next

5

data next

-17

_front:

_tail:

_size: 3

_front:

_tail:

_size: 2

data next

20

Options for implementing a prepend operation

 Could just copy our code from LinkedList remove(index), with index set to
size() - 1, but this is O(N).

› It’s disheartening to see that our new _tail pointer doesn’t help us.

 That’s because the node whose next pointer needs to change is the one with
-17, not 20.

Before:

After:

data next

5

data next

-17

data next

5

data next

-17

_front:

_tail:

_size: 3

_front:

_tail:

_size: 2

data next

20

More options for implementing a prepend operation?

 What if we add a penultimate-node pointer to our member variables?

› It will point to the second-to-last element in the list.

Before:

After: our _pen pointer helps

us get this far…

…but what about the

update to _pen?

data next

5

data next

-17_front:

_pen:

_tail:

_size: 3
data next

5

data next

-17_front:

_pen:

_tail:

_size: 2

??

The Doubly-Linked List
structure

A N O T H E R V E R Y C O M M O N
B O N U S F E A T U R E T O I M P R O V E

L I N K E D - L I S T P E R F O R M A N C E

queueLL.h [Version 3, again]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

class QueueLL

_front:

_tail:

_size: 0

This time, instead of changing our
list class, let’s reconsider the

node struct that we’ve been using
all this time.

struct LinkNode

data:

next:

0

queueLL.h [Version 4]

class QueueLL {
public:

QueueLL();
~QueueLL();
void enqueue(int value);
void clear();
int dequeue(int index);
int peek(int index) const;
bool isEmpty() const;
int size() const;
void undoEnqueue();

private:
ListNode* _front;
ListNode* _tail;
int _size;

};

class QueueLL

_front:

_tail:

_size: 0

struct DoubleLinkNode

data:

prev:

next:

0

Now each node will have two
pointers: a previous and a next.

Doubly-Linked List

 Benefits:

› Easy access to nodes before your node, when needed for edits

 Drawbacks:

› Linked list already roughly doubles amount of storage needed to hold our
data (compared to array), now doubly-linked list triples it

› More work in every add, remove, insert, etc operation to maintain correct
pointer placements

prev data next

5

_front:

_tail:

_size: 3

prev data next

-17

prev data next

20

Implementing an
undo-enqueue operation

(now lets do it)

F O R T H O S E “ N E V E R M I N D ,
T H I S R A M E N N A G I L I N E I S T O

L O N G , I ’ L L G O T O A
D I F F E R E N T R E S T A U R A N T ! ”

M O M E N T S

Implementing a prepend operation

void QueueLL::undoEnqueue() {
...

}

 What pointer(s) must be changed to remove the node at the the end of a list?

 What different cases must we consider?

prev data next

5

_front:

_tail:

_size: 3

prev data next

-17

prev data next

20

Implementing a prepend operation

void QueueLL::undoEnqueue() {
if (size() == 0) {

error("Cannot remove from empty queue!");
}

DoubleLinkNode* trash = _tail;
if (size() == 1) {

_tail = _front = nullptr;
} else {

_tail->prev->next = nullptr;
_tail = _tail->prev;

}
delete trash;
_size--;

}

SWITCHING GEARS!
Preview of our next topic: Binary Search Tree

Binary Search in a Linked
List?

E X P L O R I N G A G O O D I D E A ,
F I N D I N G W A Y T O M A K E I T

W O R K

Recall our beautiful algorithm: binary search!

 How long does it take us to find data in a sorted array?

› Use binary search!

› O(logn): awesome!!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Q. Can we do binary search on a linked list?

A. No.

 The nodes are spread all over memory, and we must follow “next”
pointers one at a time to navigate (the treasure hunt).

 Therefore cannot jump right to the middle.

 Therefore cannot do binary search.

 Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work

“What if…?”
The inspiration for Binary Search Trees

 What if…

 …instead of having a _front pointer in our linked list, we had a pointer to
the element we want to look at first in binary search: the exact
median/middle element?

 That would make the first step of our binary search really fast/easy!

 What about the next step? (and the front half of our list, lol)

data next

56

data next

24

data next

32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16

“What if…?”
The inspiration for Binary Search Trees

 What about the next step? (and the front half of our list, lol)

 Well, we could have the middle element point to the middle element of
both the left half and the right half, so the 2nd step of our binary search is
easy/fast too!

 Keep doing this until all elements have pointers to the middle of what
remains to their left/right sides…voila!

data next

56

data next

24 32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16

 Our class will have a pointer to the median element*, and each element has
pointers to the medians of everything to their left and right

› * actually it’s hard to guarantee it will be the exact middle element, more on
this, and lots more about Binary Search Trees, next time!

An Idealized Binary Search Tree

_root:

_size: 29

