
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B



Topics:

 Map implemented as a Binary Search Tree (BST)

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

› BST insert

› Big-O analysis of BST

 Next time:

› BST balance issues

› Traversals

• Pre-order

• In-order

• Post-order

• Breadth-first

› Applications of Traversals

2



Binary Search Trees

I M P L E M E N T I N G  T H E  M A P  
I N T E R F A C E  W I T H  B I N A R Y  

S E A R C H  T R E E S



Implementing Map interface with a Binary Search Tree (BST)

 Binary Search Tree is one option for implementing Map

› C++’s Standard Template Library (STL) uses a Red-Black tree (a type of 
BST) for their map

› Stanford library also uses a BST

 Another Map implementation is a hash table 

› We will talk about this later! – Special guest lecture by Head TA 
Neel Kishnani!

› This is what Stanford’s HashMap uses



Binary Search in a Linked 
List?

E X P L O R I N G  A  G O O D  I D E A ,  
F I N D I N G  W A Y  T O  M A K E  I T  

W O R K



Recall our beautiful algorithm: binary search!

 How long does it take us to find data in a sorted array? 

› Use binary search!

› O(logn): awesome!!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95



Q. Can we do binary search on a linked list?

A. No.

 The nodes are spread all over memory, and we must follow “next” 
pointers one at a time to navigate (the treasure hunt). 

 Therefore cannot jump right to the middle.

 Therefore cannot do binary search.

 Find is O(N): not terrible, but pretty bad compared to O(logn) or O(1)

Let’s brainstorm a wild idea and then see if we can make it work



“What if…?” 
The inspiration for Binary Search Trees

 What if…

 …instead of having a _front pointer in our linked list, we had a pointer to 
the element we want to look at first in binary search: the exact 
median/middle element?

 That would make the first step of our binary search really fast/easy!

 What about the next step? (and the front half of our list, lol)

data next

56

data next

24

data next

32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16



“What if…?” 
The inspiration for Binary Search Trees

 What about the next step? (and the front half of our list, lol)

 Well, we could have the middle element point to the middle element of 
both the left half and the right half, so the 2nd step of our binary search is 
easy/fast too!

 Keep doing this until all elements have pointers to the middle of what 
remains to their left/right sides…voila!

data next

56

data next

24 32

_median:

_size: 7

data next

40

data next

48

data next

8

data next

16



 Our class will have a pointer to the median element*, and each element has 
pointers to the medians of everything to their left and right

› * actually it’s hard to guarantee it will be the exact middle element, more on 
this, and lots more about Binary Search Trees, next time!

An Idealized Binary Search Tree

_root:

_size: 29



TreeMap

T H I S  I S  B A S I C A L L Y  T H E  S A M E  
A S  S T A N F O R D  M A P .

H E R E  I N  C L A S S  W E ’ L L  C A L L  I T  
T R E E M A P J U S T  T O  B E  E X P L I C I T  

A B O U T  I T S  I M P L E M E N T A T I O N .



tree-map.h

template <typename Key, typename Value> 
class TreeMap { 
public: 

TreeMap(); 
~TreeMap(); 

bool isEmpty() const;
int size() const;
bool containsKey(const Key& key) const; 
void put(const Key& key, const Value& value); 
Value get(const Key& key) const; 
Value& operator[](const Key& key);

//...(continued on next slide)



tree-map.h

// class TreeMap continued...

private: 

struct node { 

Key   key; 

Value value; 

node* left;

node* right; 

}; 

int _size; 

node* _root; 

}; 

key:

value:

left:

right:

_root:

_size:

TreeMap

node

key:

value:

left:

node
key:

value:

left:

node



BST put()

Pretty simple!

 If key > node’s key

› Go right!

 If key < node’s key

› Go left!

 If there is nothing currently in 
the direction you are going, 
that’s where you end up

 Example: put(23, value)

_root:

_size: 29



Question about our put() algorithm:

FAQ. What do we do if the key is equal to the node’s key?

Stanford Map example:

Map<int, string> mymap;

mymap.put(5, "five");

mymap.put(5, "cinco");        // what should happen?

cout << mymap.get(5) << endl; // what should print?

Pretty simple!

 If key > node’s key

› Go right!

 If key < node’s key

› Go left!



BST put() algorithm:

 If key > node’s key

› Go right!

› (if doesn’t exist—place here)

 If key < node’s key

› Go left! 

› (if doesn’t exist—place here)

 If key is equal

› Update value here!



BST put()

Insert: 22, 9, 34, 18, 3

Your Turn: How many of these result in the same tree structure as above?

22, 34, 9, 18, 3

22, 18, 9, 3, 34

22, 9, 3, 18, 34

A. None of these
B. 1 of these
C. 2 of these
D. All of these

If key > node’s key
Go right!
(if doesn’t exist—place here)

If key < node’s key
Go left!
(if doesn’t exist—place here)

If key is equal
Update value here!



BST Big-O Performance

W H A T  C A N  W E  E X P E C T  F R O M  A  
B S T - B A S E D  M A P ?



Your Turn: What is the worst case cost for doing containsKey() 
in a BST?

A. O(1)

B. O(log n)

C. O(n)

D. O(n log n)

E. O(n2)



What is the worst case cost for doing containsKey() 
in a BST if the BST is balanced?

O(logN)—awesome!

BSTs are great when balanced 

BSTs are bad when unbalanced

 …and Balance depends on order of insert of elements…

 …but user controls this, not “us” (author of the Map class)…

 …no way for “us” (author of Map class) to ensure our Map doesn’t 
perform terribly 



Your Turn: how many worst-case BSTs are there?

One way to create a bad BST is to insert the elements in decreasing order: 34, 22, 9, 3

That’s not the only way…

How many distinctly structured BSTs are there that exhibit the worst case height 
(height equals number of nodes) for a tree with the 4 nodes listed above?

A. 1-3

B. 4-5

C. 6-7

D. 8-9

E. More than 9

Bonus question: general formula for any BST of size n?

Extra bonus question (CS109): what is this as a fraction of all trees (i.e., probability of 
worst-case tree).



BST and Heap quick 
recap/cheat sheet

I T  C A N  B E  E A S Y  T O  G E T  
C O N F U S E D  B E T W E E N  B S T  A N D  

H E A P — H E R E ’ S  A  Q U I C K  
G U I D E !



23

BST and Heap Facts (cheat sheet)

Heap (Priority Queue)

 Structure: must be “complete”

 Order: parent priority must be <= 
both children 

› This is for min-heap, opposite is 
true for max-heap

› No rule about whether left child 
is > or < the right child

 Big-O: guaranteed log(n) enqueue
and dequeue

 Operations: always add to end of 
array and then “bubble up”; for 
dequeue do “trickle down”

BST (Map)

 Structure: any valid binary tree

 Order: leftchild.key < self.key < 
rightchild.key

› No duplicate keys

› Because it’s a Map, values go 
along for the ride w/keys

 Big-O: log(n) if balanced, but might 
not be balanced, then O(n)

 Operations: recursively repeat: start 
at root and go left if key < root, go 
right if key > root


