
Programming Abstractions

Cynthia Lee

C S 1 0 6 B

Topics:

 Map implemented as a Binary Search Tree (BST)

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

› BST insert

› Big-O analysis of BST

› BST balance issues

 Traversals

› Pre-order

› In-order

› Post-order

› Breadth-first

 Applications of Traversals

2

BST Balance Strategies

W E N E E D T O B A L A N C E T H E
T R E E T O K E E P P E R F O R M A N C E

O (L O G N) I N S T E A D O F O (N)

Step 1: understanding
validity and equivalence

in BSTs

A V L R O T A T I O N S : A K E Y T O
O U R R E B A L A N C I N G

A L G O R I T H M S

AVL rotations: BST-order-preserving movement of nodes

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

2. Cardinal’s key > all 7 keys to its left!

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

2. Cardinal’s key > all 7 keys to its left!

3. Green’s key < blue’s key < cardinal’s key

AVL rotations

 Here is a Binary Search Tree whose keys I’m
not going to show you

› (but the nodes have colors/textures so you
can tell them apart)

 Let’s pause and think about what we know
must be true

1. Cardinal’s key > green’s key

2. Cardinal’s key > all 7 keys to its left!

3. Green’s key < blue’s key < cardinal’s key

 Those are just a few examples of the kind of
reasoning you’ll want to use for this
exercise…

Original
(valid BST):AVL rotations

 Your turn: Which of the trees below are still
in BST order? (list all that apply)

(A)

(B)

(C)

Original
(valid BST):AVL rotations

 2/3 are actual AVL rotations!

 In this case, our BST started balanced, so
the rotations made the less balanced. But
also useful for balancing.

(invalid)

Original (valid but unbalanced BST):

Left-Left AVL Rotation

 Right-Right is just the mirror image

Left-Left rotation (restores balance):

Original (valid but unbalanced BST):

Right-Left AVL Rotation

Right-Left rotation (restores balance):

 Left-Right is just the mirror image

A few BST balance strategies

 AVL tree

› Uses AVL rotations to guarantee balance

 Red-Black tree

› Uses AVL rotations to guarantee balance is off by no more than a constant
factor (longest path from root to leaf can be at most 2x the shortest path)

 Treap

› Each node has *two* keys and a value, one is BST key, one is a min-heap
key, both kinds of trees’ order properties are maintained (!!!)

› Insert nodes according to BST keys and BST order

› Then use AVL rotations to “bubble up” the newly inserted node as needed
to restore the min-heap order property on the min-heap keys

› What could be cooler than that, amirite? ♥😍♥😍

Red-Black trees

Every simple path from a given node to any of its
descendant leaves contains the same number of
black nodes.

 (This is what guarantees “close” to balance)

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg

Video: http://www.youtube.com/watch?v=vDHFF4wjWYU

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
http://www.youtube.com/watch?v=vDHFF4wjWYU

Other fun types of BST

Splay tree

 Rather than only worrying about balance, Splay Tree dynamically
readjusts based on how often users search for an item. Most
commonly-searched items move towards the root, saving time

› Example: if Google did this, “Bieber” would be near the root,
and “splay tree” would be further down by the leaves

B-Tree

 Like BST, but a node can have many children, not just two

 More branching means an even “flatter” (smaller height) tree

 Used for huge databases

Tree Traversals!

T H E S E A R E F O R A N Y B I N A R Y
T R E E S , B U T W E O F T E N D O

T H E M O N B S T S

Your Turn: What does this print?
(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {

cout << node->key << " ";
traverse(node->left);
traverse(node->right);

}
}

A. A B C D E F
B. A B D E C F
C. D B E F C A
D. D E B F C A
E. Other/none/more

A

B C

D E F

Your Turn: What does this print?
(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {

traverse(node->left);
traverse(node->right);
cout << node->key << " ";

}
}

A. A B C D E F
B. A B D E C F
C. D B E F C A
D. D E B F C A
E. Other/none/more

A

B C

D E F

Your Turn: What does this print?
(assume we call traverse on the root node to start)

void traverse(Node* node) {
if (node != nullptr) {

traverse(node->left);
cout << node->key << " ";
traverse(node->right);

}
}

A. 1 2 4 5 8 9
B. 1 4 2 9 8 5
C. 5 2 1 4 8 9
D. 5 2 8 1 4 9
E. Other/none/more

5

2 8

1 4 9

Applications of Tree
Traversals

B E A U T I F U L L I T T L E T H I N G S
F R O M A N

A L G O R I T H M S / T H E O R Y
S T A N D P O I N T , B U T T H E Y H A V E

A P R A C T I C A L S I D E T O O !

Traversals a very commonly-used tool in your CS toolkit

void traverse(Node* node) {

if (node != NULL) {

traverse(node->left);

// "do something”

traverse(node->right);

}

}

 Customize and move around the “do something,” and that’s the basis for
dozens of algorithms and applications

Stanford Library Map

 Remember how when you iterate over the Stanford library Map you get the
keys in sorted order?

› (we used this for the word occurrence counting code example in class)

 Now you know why it can do that in O(N) time!

› Stanford library Map is a BST

› In-order traversal on BST!

Your Turn: Applications of the traversals

 You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

A. Pre-order

B. In-order

C. Post-order

D. Breadth-first

5

2 8

1 4 9

_size:

_root:

6
BST

Applications of the traversals

 You are writing the destructor for a BST class. Given a pointer to the
root, it needs to free each node. Which traversal would form the
foundation of your destructor algorithm?

› Post-order is a good choice, because we
need to use the node’s fields to recurse

› Don’t want to delete fields before we use them

void bstDestructorRecursiveHelper(Node *node) {
if (node != nullptr) {

bstDestructorRecursiveHelper(node->left);
bstDestructorRecursiveHelper(node->right);
delete node; // post-order

}
}

5

2 8

1 4 9

_size:

_root:

6
BST

Breadth-First Tree Traversal
A somewhat different kind of traversal

How can we get code to print top-to-bottom, left-to-right order?

void traverse(Node* node) {
if (node != nullptr) {

?? cout << node->key << " ";
traverse(node->left);
traverse(node->right);

}
}

You can’t do it by using this code and moving around the cout—we already tried
moving the cout to all 3 possible places and it didn’t print in order
 You can but you use a queue instead of recursion
 “Breadth-first” search
 Again we see this key theme of BFS (queue) vs DFS (stack/recursion)!

5

2 8

1 4 9

