
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Topics:

 Continue discussion of Trees

› So far we’ve studied several types of Binary Trees:

• Binary Heaps (Priority Queue)

• Binary Search Trees/BSTs (Map)

• We also heard about some variants and cousins of the BST: red-
black trees, splay tress, B-Trees

 Today we’re going to be talking about Huffman trees

2

Getting Started on
Huffman

N E X T A S S I G N M E N T A F T E R
L I N K E D L I S T S (W H I C H I S D U E

W E D N E S D A Y)

Encoding with Huffman Trees:

 Today we’re going to be talking about your next assignment: Huffman coding

› It’s a compression algorithm

› It’s provably optimal (take that, Pied Piper)

› It involves binary tree data structures, yay!

 But before we talk about the tree structure and algorithm, let’s set the scene
a bit and talk about BINARY

› (as in the 0/1 kind of binary)

4

Binary on computers

B I N A R Y = B A S E 2 N U M B E R S
(W E S T E R N H U M A N S U S U A L L Y

U S E B A S E 1 0)

In a computer, everything is numbers!

Specifically, everything is binary

 Integers (int): binary numbers

 Real numbers (double): binary numbers

 Letters and words (ASCII, Unicode): binary numbers

 Images (gif, jpg, png): binary numbers

 Music (mp3): binary numbers

 Movies/music (streaming): binary numbers

 Doge pictures (): binary numbers

 Email messages: binary numbers

 Program code: binary numbers

Encodings are what tell us how to translate

› “if we interpret these binary digits as an image, it would look like this”

› “if we interpret those same binary digits as music, it would sound like this”

In a computer, everything is numbers !

 Recall we represent variables as boxes

› What is contained in each box—whether it be an int or an int* or a
string or anything else—is always some number of binary digits (bits)

› We can’t know by looking at the bits whether they are being stored
with the intention to be an int or an int* or a string or something
else—just looks like bits

 Example of actual bits:

111001101110011011111010

Color
(RGB):

15132410Number
(int):

ASCII encoding

1 9 7 0 S R E T R O T I M E

ASCII is an old-school encoding for characters

 The “char” type in C++ is based on ASCII

 Leftover from C in the 1970’s

 Recall from Katie Creel’s talk on representational harms:

› ASCII doesn’t play well with non-English languages, and today’s software
can’t afford to be so America-centric, so Unicode is more common

 ASCII is simple so we use it for this assignment

DEC OCT HEX BIN Symbol

32 040 20 00100000

33 041 21 00100001 !

34 042 22 00100010 "

35 043 23 00100011 #

36 044 24 00100100 $

37 045 25 00100101 %

38 046 26 00100110 &

39 047 27 00100111 '

40 050 28 00101000 (

41 051 29 00101001)

42 052 2A 00101010 *

43 053 2B 00101011 +

44 054 2C 00101100 ,

45 055 2D 00101101 -

46 056 2E 00101110 .

47 057 2F 00101111 /

48 060 30 00110000 0

49 061 31 00110001 1

50 062 32 00110010 2

51 063 33 00110011 3

52 064 34 00110100 4

DEC OCT HEX BIN Symbol

53 065 35 00110101 5

54 066 36 00110110 6

55 067 37 00110111 7

56 070 38 00111000 8
57 071 39 00111001 9

58 072 3A 00111010 :

59 073 3B 00111011 ;

60 074 3C 00111100 <
61 075 3D 00111101 =
62 076 3E 00111110 >

63 077 3F 00111111 ?

64 100 40 01000000 @

65 101 41 01000001 A
66 102 42 01000010 B

67 103 43 01000011 C

68 104 44 01000100 D

69 105 45 01000101 E
70 106 46 01000110 F
71 107 47 01000111 G

72 110 48 01001000 H

73 111 49 01001001 I

74 112 4A 01001010 J

ASCII Table

Notice each symbol
is encoded as 8
binary digits (8 bits)

There are 256
unique sequences of
8 bits, so numbers 0-
255 each correspond
to one character
(this only shows 32-74)

00111110 = ‘<’

ASCII Example

“happy hip hop” =

104 97 112 112 121 32 104 105 (decimal)

Or this in binary:

FAQ: Why does 104 = ‘h’?

Answer: it’s arbitrary, like most encodings. Some people in the 1970s
just decided to make it that way.

Craft Time!

N E R D F A S H I O N

[Aside] Unplugged programming:
The Binary Necklace

DEC OCT HEX BIN Symbol

65 101 41 01000001 A
66 102 42 01000010 B
67 103 43 01000011 C

68 104 44 01000100 D

69 105 45 01000101 E

70 106 46 01000110 F
71 107 47 01000111 G
72 110 48 01001000 H

73 111 49 01001001 I

 Choose one color to represent 0’s and another
color to represent 1’s

 Write your name in beads by looking up each
letter’s ASCII encoding

 For extra bling factor, this one uses glow-in-
the dark beads as delimiters between letters

The Binary Necklace

 Web tool to help you translate words to bead patterns:

› https://web.stanford.edu/~cbl/binary_bead_design.html

https://web.stanford.edu/~cbl/binary_bead_design.html

The Binary Necklace

 Some ideas from
previous students!

More binary fashion…the Mars Rover!

More binary fashion…the Mars Rover!

More binary fashion…the Mars Rover!

More binary fashion…the Mars Rover!

Non-ASCII encodings of
characters

L O O K I N G T O W A R D S
E F F I C I E N C Y

Non-ASCII (variable-length)
encoding example

“happy hip hop” =

The variable-length encoding scheme makes a MUCH more space-
efficient message than ASCII:

Huffman encoding

 Huffman encoding is a way of choosing which characters are encoded
which ways, customized to the specific file you are using

 Example: character ‘#’

› Rarely used in Shakespeare (code could be longer, say ~10 bits)

› If you wanted to encode a Twitter feed, you’d see # often (maybe only ~4
bits) #contextmatters #thankshuffman

 We store the code translation as a tree:

Your turn

What would be the binary encoding of “hippo” using this Huffman encoding
tree?

A. 11000

B. 0101101010

C. 0100110101110

D. 0100010101111

E. Other/none/more than one

Okay, so how do we make the tree?

1. Read your file and count how many times each character occurs

2. Make a collection of tree nodes, each having a key = # of occurrences and a
value = the character

› Example: “c aaa bbbd”

› For now, tree nodes are not in a tree shape

› We actually store them in a Priority Queue (yay!!) based on highest priority =
LOWEST # of occurrences

› Next:

• Dequeue two nodes and make them the two children of a new node, with
no character and # of occurrences is the sum,

• Enqueue this new node

• Repeat until PQ.size() == 1

Your turn
If we start with the Priority Queue above, and

execute one more step, what do we get?

(A)

(B)

(C)

Last two steps

Now assign codes

We interpret the tree as:

 Left child = 0

 Right child = 1

What is the code for “c”?

A. 00

B. 010

C. 101

D. Other/none

c a b

010 10 11

Pop Quiz Time

A B O U T T H A T E F F I C I E N C Y …

Key question: How do we know when one character’s bits
end and another’s begin?

c a b

010 10 11

Your turn:

TRUE OR FALSE: Huffman needs delimiters (like the glow-
in-the-dark beads), unlike ASCII, which is always 8 bits
(and didn’t really need the beads).

A. TRUE

B. FALSE

Discuss/prove it: why or why not?

ASCII

 ASCII’s uniform encoding size makes it easy

› Don’t really need those glow-in-the-dark beads as delimiters, because we
know every 9th bead starts a new 8-bit letter encoding

 Key insight: also a bit wasteful (ha! get it? a “bit”)

› What if we took the most commonly used characters (according to Wheel
of Fortune, some of these are RSTLNE) and encoded them with just 2 or 3
bits each?

› We let seldom-used characters, like &, have encodings that are longer, say
12 bits.

› Overall, we would save a lot of space!

