Programming Abstractions
CS106B

Cynthia Bailey Lee
Julie Zelenski

Stanford University

Topics:

= Continue discussion of Trees
> So far we’ve studied several types of Binary Trees:
* Binary Heaps (Priority Queue)
* Binary Search Trees/BSTs (Map)

* We also heard about some variants and cousins of the BST: red-
black trees, splay tress, B-Trees

= Today we’re going to be talking about Huffman trees

Stanford University

Getting Started on
Huffman

NEXT ASSIGNMENT AFTER
LINKED LISTS (WHICH IS DUE
WEDNESDAY)

Stanford University

Encoding with Huffman Trees:

= Today we’re going to be talking about your next assignment: Huffman coding
> It’s a compression algorithm
> It’s provably optimal (take that, Pied Piper)
> Itinvolves binary tree data structures, yay!

= But before we talk about the tree structure and algorithm, let’s set the scene
a bit and talk about BINARY

> (asinthe 0/1 kind of binary)

Stanford University

Binary on computers

BINARY = BASE 2 NUMBERS
(WESTERN HUMANS USUALLY
USE BASE 10)

Stanford University

In a computer, everything is numbers!
Specifically, everythingis binary

= Integers (int): binary numbers
= Real numbers (double): binary numbers
= Lettersand words (ASCII, Unicode): binary numbers
= Images (gif, jpg, png): binary numbers
= Music (mp3): binary numbers
= Movies/music (streaming): binary numbers
= Doge pictures (;}‘3): binary numbers
= Email messages: binary numbers
= Program code: binary numbers

Encodings are what tell us how to translate
> “if we interpret these binary digits as an image, it would look like this”
> “if we interpret those same binary digits as music, it would sound like this”

Stanford University

In a computer, everything is numbers !

= Recall we represent variables as boxes

> What is contained in each box—whetherit be an int oran int* or a
string or anything else—is always some number of binary digits (bits)

> We can’t know by looking at the bits whether they are being stored
with the intention to be an int or an int* or a string or something
else—just looks like bits

= Example of actual bits:
1110011011100110111110160

Color Number 15132410
(RGB): (int):

Stanford University

ASCIl encoding

1970S RETRO TIME

Stanford University

ASCll is an old-school encoding for characters

= The “char” typein C++is based on ASCII
= Leftover from Cinthe 1970’s

= Recall from Katie Creel’s talk on representational harms:

> ASCII doesn’t play well with non-English languages, and today’s software
can’t afford to be so America-centric, so Unicode is more common

= ASCllis simple so we use it for this assignment

Stanford University

ASCII Table

Notice each symbol
isencoded as 8
binary digits (8 bits)

There are 256
unique sequences of
8 bits, so numbers 0-
255 each correspond
to one character

(this only shows 32-74)

00111110="°<

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

040
041
042
043
044
045
046
047
050

051
052
053
054
055
056
057
060
061
062
063
064

20
21
22
23
24
25
26
27
28

29
2A
2B
2C
2D
2E
2F
30
31
32
33
34

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000

00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100

A WOIDNPEFE O ~—-

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112

35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A

00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010

O 00 N O U

C —ITOmTMMmMUOUOm>E vV

char ASCIT bit pattern (binary)

h 104 01101000
ASCII Example 2 97 01100001
p 112 01110000
v 121 01111001
i 105 01101001
o 111 01101111
space 32 00100000

“happy hip hop” =
10497112112 121 32 104 105 (decimal)
Or this in binary:
01101000 [01100001 [01110000 (01110000 [01111001 [00100000 01101000
01101001 [01110000 [00100000 (01101000 [01101111 [01110000

FAQ: Why does 104 = ‘h’?

Answer: it’s arbitrary, like most encodings. Some people in the 1970s
just decided to make it that way.

Stanford University

Craft Time!

NERD FASHION

Stanford University

[Aside] Unplugged programming:
The Binary Necklace

= Choose one colorto represent 0’s and another
color to represent 1’s

= Write your name in beads by looking up each
letter’s ASCIl encoding

= For extra bling factor, this one uses glow-in-
the dark beads as delimiters between letters

65 101 41 01000001
66 102 42 01000010
67 103 43 01000011
68 104 44 01000100
69 105 45 01000101
70 106 46 01000110
71 107 47 01000111
72 110 48 01001000

—

- T O M mOO T >

Vi aY Fa e N aVal NaVYall

The Binary Necklace

= Web tool to help you translate words to bead patterns:
> https://web.stanford.edu/~cbl/binary bead_design.html

Stanford University

https://web.stanford.edu/~cbl/binary_bead_design.html

@
O
AL
~
U
@
=

inary

Some ideas from
previous students!

The B

More binary fashion...the Mars Rover!

Stanford University

More binary fashion...the Mars Rover!

Stanford University

More binary fashion...the Mars Rover!

Stanford University

More binary fashion...the Mars Rover!

Stanford University

Non-ASCIl encodings of
characters

LOOKING TOWARDS
EFFICIENCY

Stanford University

char bit pattern

h 01
. a 000
Non-ASCIl (variable-length) b 10
encoding example y 1111
i 001
o 1110
space 110
“happy hip hop” =
01 [000 [10 [10 [1111 [110 [01 [001 [10 [110 [01 [1110[10
The variable-length encoding scheme makes a MUCH more space-
efficient message than ASCII:
01101000 [01100001 [01110000 [01110000 [01111001 [00100000 [01101000
01101001 [01110000 [00100000 [01101000 [01101111 [01110000

Stanford University

Huffman encoding

= Huffman encoding is a way of choosing which characters are encoded
which ways, customized to the specific file you are using

= Example: character ‘#’
> Rarely used in Shakespeare (code could be longer, say ~10 bits)

> If you wanted to encode a Twitter feed, you’d see # often (maybe only ~4
bits) #contextmatters #thankshuffman

= We store the code translation as a tree:

Your turn

What would be the binary encoding of “hippo” using this Huffman encoding
tree?

11000

0101101010
0100110101110
0100010101111
Other/none/more than one

mooOow>

Stanford University

Okay, so how do we make the tree?

1. Read your file and count how many times each character occurs
2. Make a collection of tree nodes, each having a key = # of occurrences and a

value = the character +’fff'f-+ t-i3it it it ,,-:‘f":"ff
> Example: “c aaa bbbd” | 1 |) 1 | | 2 | | 3 { | 3 |
=== + ----- + A----- + 4----- + === +

> For now, tree nodes are not in a tree shape

> We actually store them in a Priority Queue (yay!!) based on highest priority =
LOWEST # of occurrences

> Next:

» Dequeue two nodes and make them the two children of a new node, with
no character and # of occurrences is the sum,

* Enqueue this new node

* Repeat until PQ.size() == / \

A - b fm———— + +-:t-):-+ Fm————— +
2| 2] |73] @W 3] 1Y |
- * == o * o * R + i Rpp—— 4 R —— +
/ \ /\
/N /o \
i H i H + +
os ‘g -
1 1 ENREN
L . $===== + d====- +
Yourturn (B) +-:|;:-+ +':t'):'+ 'i' """ 'i'
If we start with the Priority Queue above, and l--%--+ ,|,__?‘__+ +--‘3’--+
execute one more step, what do we get? \
_______________ == == wd
(C) + s + + X + + -i- | |
3 3 a 121
$ommm- + Femee- + Aeememe- +
!! \\ /! ‘\
HNEN
5 2 1 1
 S—— * S T—— + "'";""" L
[\ /
/ \ +
+ +"c-!"+ o
C
BEEEN 121

|
|
rom e
|- -
- - ' Z
' P e 5 3y
| I >
' O ot
| PN [
' N p—)
+—+ | o
- |- =
P oM o)
> |- | S
- —_— ' ' - - -
' ' - = - | U o v}
]] I - ' =
' o I D1 P
| ™ | -
' ' -— - '
+—t | | p—
. ' |
| N
~ ' IS
.— ' I N ——t
' | o — | |
! [| - [
1 < U
' S | - '
! | N P — | |
+—— ' ' +——
| - |
[N
| - '
! |
- .
- - .
! '
| - |
rom
I =
e e |
' ! o A —
' 1
| O 1
' S
' ' N P—
e | |
|- |
P oM
| - '
! |
- .
! '
S | - |
p IO
I -
._n_lw i - +
| | _
w PN >
' [N
o .. ' N ——t
W [[P —— ['
| | | - '
) | < ! U
| S | - '
wfd ' ' ' |
7)) e .—
o
—

Now assign codes 10 |
+----- +
We interpret the tree as: / \
oy o / \ 1
= Leftchild=0 P + fmmmmm +
= Rightchild=1 | |
4 6
+----- + +----- +
. [Pl f \ f \
What is the code for “c”? o / \ 1 o / \ 1
A. 00 - + H----- + - + H----- +
. L b
5. o1 R
C. 101 - + +-===- + tom——- + o= +
D. Other/none 0 / \\ 1
+----- + H----- +
‘¢! EOF
C al| b | 1 1
010 | 10 | 11 +o---- LA St +

Stanford University

Pop Quiz Time

ABOUT THAT EFFICIENCY...

Stanford University

Key question: How do we know when one character’s bits
end and another’s begin?

Your turn:

TRUE OR FALSE: Huffman needs delimiters (like the glow-
in-the-dark beads), unlike ASCII, which is always 8 bits
(and didn’t really need the beads).

A. TRUE
B. FALSE

Discuss/prove it: why or why not?

010

10

11

ASCII

= ASCII’s uniform encoding size makes it easy

> Don’t really need those glow-in-the-dark beads as delimiters, because we
know every 9t bead starts a new 8-bit letter encoding

= Key insight: also a bit wasteful (ha! getit? a “bit”)

> What if we took the most commonly used characters (according to Wheel
of Fortune, some of these are RSTLNE) and encoded them with just 2 or 3
bits each?

> We let seldom-used characters, like &, have encodings that are longer, say
12 bits.

> Overall, we would save a lot of space!

Stanford University

