
Programming Abstractions

Cynthia Bailey Lee

Julie Zelenski

C S 1 0 6 B

Graphs
What are graphs? What are they good for?

Graph

This file is licensed under the Creative Commons Attribution 3.0 Unported license. Jfd34 http://commons.wikimedia.org/wiki/File:Ryan_ten_Doeschate_ODI_batting_graph.svg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/3.0/deed.en
http://commons.wikimedia.org/w/index.php?title=User:Jfd34&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Ryan_ten_Doeschate_ODI_batting_graph.svg

Graphs in Computer Science

Slide by Keith Schwarz

A graph is a mathematical
structure for representing
relationships

 A set V of vertices (or nodes)

 A set E of edges (or arcs) connecting
a pair of vertices

A Social Network

Slide by Keith Schwarz

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gifSlide by Keith Schwarz

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg Slide by Keith Schwarz

Internet
8

This file is licensed under the Creative Commons Attribution 2.5 Generic license. The Opte Project http://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.5/deed.en
http://commons.wikimedia.org/w/index.php?title=Barrett_Lyon&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Internet_map_1024.jpg

Graphs: basic terminology

 A set V of vertices (or nodes)

› Often have an associated label

 A set E of edges (or arcs) connecting a pair of vertices

› Often have an associated cost or weight

 A graph may be directed (an edge from A to B only allow you
to go from A to B, not B to A)

 or undirected (an edge between A and B allows travel in
both directions)

 We talk about the number of vertices or edges as the size of
the set, using the set theory notation for size: |V| and |E|

Boggle as a graph

Vertex = letter cube; Edge = connection to neighboring cube

Maze as graph

If a maze is a graph, what is a vertex and what is an edge?

Diagrams each show a graph with four
vertices: Apple, Banana, Pear, Plum. Each
answer choice has different edge sets.

A: no edges
B: Apple to Plum directed, Apple to banana
undirected
C: Apple and Banana point to each other. Two
edges point from Plum to Pear

Graphs

All of the following are valid graphs:

A graph could be a
single node

An example of a
directed graph
with 4 nodes

Graphs don’t have to
be connected (notice
this one has two
separated parts)

Graph Terminology

Graph terminology: Paths

path: A path from vertex a to b is a sequence of edges that can be followed
starting from a to reach b.

neighbor or adjacent: Two vertices connected directly by an edge.

reachable: Vertex a is reachable from b if a path exists from a to b.

connected: A graph is connected if every vertex is reachable from every other.

cycle: A path that begins and ends at the same node.

Representing Graphs

W A Y S W E C O U L D I M P L E M E N T A
G R A P H C L A S S

Adjacency Matrix

0 1 1 0 0 0

0 0 0 1 1 0

1 1 0 1 0 0

0 1 0 0 0 0

0 0 0 1 0 1

0 0 1 1 0 0

Representing Graphs: Adjacency matrix

We can represent a graph as a

Grid<bool> (unweighted)

0 1 1 0 0 0

0 0 0 1 1 0

1 1 0 1 0 0

0 1 0 0 0 0

0 0 0 1 0 1

0 0 1 1 0 0

Representing Graphs: Adjacency matrix

We can represent a graph as a

Grid<bool> (unweighted)

Your Turn:
what aspect of

the picture
does this

0/false
correspond to?

Your Turn: which edge in the picture
does this 1/true correspond to?

0 5 1 0 0 0

0 0 0 2 5 0

4 1 0 3 0 0

0 2 0 0 0 0

0 0 0 2 0 7

0 0 1 6 0 0

Representing Graphs: Adjacency matrix

We can represent a graph as a

Grid<int> (weighted)

5

7

2

6

1

3

1

4

5 2

1

Adjacency List

Representing Graphs: Adjacency list

Node Connected To

Map<Node*, Set<Node*>> We can represent a graph

as a map from nodes to the

set of nodes each node is

connected to.

Slide by Keith Schwarz

Representing Graphs: Adjacency list

Node Connected To

Map<Node*, Set<Edge*>> We can represent a graph

as a map from nodes to the

set of nodes each node is

connected to.

Slide by Keith Schwarz

5

7

2

6

1

3

1

4

5 2

52

45

72

61

14

2

3

Your Turn: choosing an implementation

 Which implementation would you choose for the following circumstances:

› Nodes = Facebook accounts (about 3 billion of them)

› Edges = the two accounts are “Friends” with each other

 Answer each of the following:

› Should your graph be weighted or unweighted?

› Should your graph be directed or undirected?

› Should you use Adjacency Matrix or Adjacency List?

› And explain why 

23

Breadth-First Search

W E ’ V E S E E N B F S B E F O R E T H I S
Q U A R T E R !

BFS in this class so far

Assignment

25

Θ

A

B C

D E F

Trees Slime Mold

Maze

Generic BFS algorithm pseudocode

1. Make an empty queue to store places we want to visit in the future

2. Enqueue the starting location

3. While the queue is not empty (and/or until you reach a desired
destination):

› Dequeue a location

› Mark that location as visited

› Enqueue all the neighbors of that location

Breadth-First Search in a
Graph

G R A P H A L G O R I T H M S

Breadth-First Search
A B

E F

C D

G H

I J

L

K

BFS is useful for finding the
shortest path between two
nodes (in an unweighted, or

equally-weighted graph).

Breadth-First Search
A B

E F

C D

G H

I J

L

K

Example:
What is the shortest way to

go from F to G?

One way (not the shortest):
F->E->I->G

3 edges

Breadth-First Search
A B

E F

C D

G H

I J

L

K

Example:
What is the shortest way to

go from F to G?

Shortest way:
F->K->G
2 edges

BFS is useful for finding the
shortest path between two

nodes.

Map Example:
What is the shortest way to
go from Yoesmite to Palo

Alto?

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

A BFS algorithm for graphs with a special property…

TO START:
(1)Color all nodes GREY

(2)Queue is empty

Yoesmite

Palo Alto

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

F

TO START (2):
(1)Enqueue the desired start

node
(2)Note that anytime we
enqueue a node, we mark

it YELLOW

A BFS algorithm for graphs with a special property…

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

F
LOOP PROCEDURE:
(1)Dequeue a node

(2)Mark current node GREEN
(3)Set current node’s GREY

neighbors’ parent pointers
to current node, then

enqueue them (remember:
set them YELLOW)

A BFS algorithm for graphs with a special property…

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

You predict the next slide!

A. K’s neighbors F,G,H are yellow
and in the queue and their
parents are pointing to K

B. K’s neighbors G,H are yellow
and in the queue and their
parents are pointing to K

C. K’s neighbors G,H are yellow
and in the queue

D. Other/none/more

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Done!

Now we know that to go from
Yoesmite (F) to Palo Alto (J),
we should go:

F->E->I->L->J
(4 edges)

(note we follow the parent
pointers backwards)

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:
(1) We used a queue
(2) What’s left is a kind of

subset of the edges, in the
form of ‘parent’ pointers

(3) If you follow the parent
pointers from the desired
end point, you will get
back to the start point,
and it will be the shortest
way to do that

Quick question about efficiency…

Let’s say that you have an extended family with
somebody in every city in the western U.S.

Quick question about efficiency…

You’re all going to fly to Yosemite for a family
reunion, and then everyone will rent a car and
drive home, and you’ve been tasked with
making custom Yosemite-to-home driving
directions for everyone.

Quick question about efficiency…

You calculated the shortest path for yourself to return home from the
reunion (Yosemite to Palo Alto) and let’s just say that it took time X =
O((|E| + |V|)log|V|)

• With respect to the number of cities |V|, and the number of edges
or road segments |E|

How long will it take you, in total, to calculate the shortest path for you
and all of your relatives?

A. O(|V|*X) (for X as defined above)

B. O(|E|*|V|* X) (for X as defined above)

C. X (for X as defined above)

D. Other/none/more

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:
(4) If we go until the queue is
empty, we now have the
answer to the question
“What is the shortest path to
you from F?” for every single
node in the graph!!

Dijkstra’s Shortest Paths

(L I K E B R E A D T H - F I R S T
S E A R C H , B U T T A K E S I N T O

A C C O U N T W E I G H T / D I S T A N C E
B E T W E E N N O D E S)

Edsger Dijkstra

This file is licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license. http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

1930-2002

 THE multiprogramming system (operating
system)

 Layers of abstraction!!

 Complier for a language that can do recursion

 Dining Philosopher’s Problem (resource
contention and deadlock)

 Dijkstra’s algorithm

 “Goto considered harmful” (title given to his
letter)

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

The Good Will Hunting
Problem

“Draw all the homeomorphically irreducible trees with n=10.”

“Draw all the homeomorphically irreducible
trees with n=10.”

In this case “trees” simply means connected, undirected graphs
with no cycles

“with n = 10” (i.e., has 10 nodes)

“homeomorphically irreducible”

 No nodes of degree 2 (nodes adjacent to exactly two other
nodes) are allowed in your solutions

› For this problem, nodes of degree 2 are useless in terms of
tree structure—they just act as a blip on an edge—and are
therefore banned

 Have to be actually different

› Ignore superficial changes in rotation or angles of drawing

