
Programming Abstractions
CS106B

Cynthia Lee, Julie Zelenski, Neel Kishnani

Today’s Agenda
● Analyzing ADT Implementations

● Implementing ADTs so far
○ Arrays
○ Binary Search Trees

● Hash tables
○ Hash functions
○ What makes a “good” hash function?

● Other uses of hashing

Analyzing ADT Implementations

Analyzing ADT Implementations

Our goal is to achieve fast

● Contains 🔎
● Add 🗃
● Remove 🗑

Review:
Implementing ADTs so far

🛠

Implementing Set
● Let’s use an array!

● We need dynamic memory (on the heap!)

● 2 versions: unsorted array and sorted array

Unsorted Array
Need to check if the element is contained in the Set

Contains

Add

Remove

Unsorted Array
Need to check if the element is contained in the Set

Contains O(n)

Add

Remove

Unsorted Array
Need to check if the element is contained in the Set

Contains O(n)

Add O(n)

Remove

Unsorted Array
Need to check if the element is contained in the Set

Contains O(n)

Add O(n)

Remove O(n)

Sorted Array
Binary search speeds up lookups!

Contains

Add

Remove

Sorted Array
Binary search speeds up lookups!

Contains O(log(n))

Add

Remove

Sorted Array
Still need to shift elements over 😕

Contains O(log(n))

Add O(n)

Remove

Sorted Array
Still need to shift elements over 😕

Contains O(log(n))

Add O(n)

Remove O(n)

Binary Search Trees 🌳

Next step for lookup-based structures...

Stanford library Map and Set
classes are backed by binary

search trees

Binary Search Trees
Assuming a balanced binary search tree

Contains

Add

Remove

Binary Search Trees
Assuming a balanced binary search tree

Contains O(log(n))

Add

Remove

Binary Search Trees
Assuming a balanced binary search tree

Contains O(log(n))

Add O(log(n))

Remove

Binary Search Trees
Assuming a balanced binary search tree

Contains O(log(n))

Add O(log(n))

Remove O(log(n))

Can we do better than O(log(n))? 🤔

Some context before
answering that question

UG2 Package Center
● The package center gets a lot of packages

throughout the quarter

● They store packages by keeping a small number of
buckets for groups of packages

UG2 Package Center
● They have a rule that assigns packages to buckets

● When a student comes in to pick up their package,
they know exactly which bucket to go to

Let’s introduce a special function
called a hash function

We’ll use this hash function to
assign elements to buckets

Hash Functions
Important property:

The same input should produce the same output

● Functions with this property are deterministic
● More on deterministic functions in CS103!

For the purposes of CS106B, assume our hash
function returns an int

The input can be of any type though! (string,
double, int, etc.)

Input: 12

Input: 12

Hash Code: 106107

The output of a
hash function is
called a hash
code!

Input: 137

Input: 137

Hash Code: 309731

Input: 12

Input: 12

Hash Code: 106107

A new data structure 🪣
● Let’s go back to our array and treat each slot as a

bucket for elements, just like the package center!

● We’ll assign each element we need to insert into a
bucket and store it there

Use a hash function to assign
elements to buckets 🪣

This data structure is called a

Hash Table

HashTable::HashTable() {
 // Initialize array of buckets
 _elements = new int[NUM_BUCKETS];
}

An idea for a hash function
Return the element itself!

int hash1(int elem) {
 return elem;
}

void HashTable::insert(int elem) {
 int bucket = hash1(elem);
 _elements[bucket] = elem;
}

Break

Logistics
● Assignment 6 grace period ends tonight (11/19) at

11:59PM

● Assignment 7 is out now and due 12/1
○ Huffman Coding!
○ Assignment 7 YEAH is today at 2:30PM in

Hewlett 201

Logistics
● Final Diagnostic:

○ 24 hour window on Monday December 6th
○ Same format as midterm
○ Stay tuned for practice materials

Resume

Our Buckets
[0]

[1]

[2]

[3]

[4]

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Hash Function:

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Hash Function:

Input: 3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Input: 3

Hash Code: 3

Hash Function:

3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Input: 3

Hash Code: 3

Hash Function:

The hash code is
the bucket we put
the element in

3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Input: 0

Hash Function:

3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Input: 0

Hash Code: 0

Hash Function:

0

3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Input: 0

Hash Code: 0

Hash Function:

0

3

[0]

[1]

[2]

[3]

[4]

int hash1(int elem) {
 return elem;
}

Input: 17000

Hash Function:

0

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash1(int elem) {
 return elem;
}

Input: 17000

Hash Code: 17000

0[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash1(int elem) {
 return elem;
}

Input: 17000

Hash Code: 170003

17000

...

[17000]

We need to enlarge
our array

0[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash1(int elem) {
 return elem;
}

Input: 17000

Hash Code: 170003

17000

...

[17000]

Lots of wasted space
here!

Issue #1

This hash function could lead to a
sparse hash table

0[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash1(int elem) {
 return elem;
}

Input: -3
3

17000

...

[17000]

🤨

Issue #2

This hash function doesn’t handle
negative inputs

Issue #3
We don’t initialize the buckets, so there’s a chance
that an “empty” bucket could have a value

(i.e. bucket N could have N in it as a “garbage”
value leading to an incorrect check on contains)

We want to limit the range of
possible buckets

A better(?) hash function 💭
Let’s use the % operator!

int hash2(int elem) {
 return abs(elem) % numBuckets;
}

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 3

Hash Code: 3

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 3

Hash Code: 3

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 17000

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 17000

Hash Code: 0

17000

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 17000

Hash Code: 0

Handles this large
value!

17000

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: -6

17000

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: -6

Hash Code: 1

17000

-6

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: -6

Hash Code: 1

Handles this
negative value!

17000

-6

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 8

17000

-6

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 8

Hash Code: 3

17000

-6

3

[0]

[1]

[2]

[3]

[4]

Hash Function:
int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 8

Hash Code: 3

💥

Hash Collisions
● Our hash function assigned two different elements

to the same bucket

● We call this a collision

Collision Resolution
● We have to decide what to do when collisions

happen

● Instead of having our array store int, let’s have it
store ListNode* 🤯
○ Each bucket will now be a linked list
○ When we have a collision, we can add the new

element to the front of the list in O(1)

HashTable::HashTable() {
 // Initialize array of buckets
 _elements = new ListNode*[NUM_BUCKETS]();
}

A double pointer
(ListNode**)! This
means that each array
element is a pointer.
More in CS107!

HashTable::HashTable() {
 // Initialize array of buckets
 ListNode **_elements = new ListNode*[NUM_BUCKETS]();
}

A double pointer! This
means that each array
element is a pointer.
More in CS107!

Initialize each bucket
to the nullptr

This is called a

Chaining Hash Table

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 2

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 2

Hash Code: 2

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 2

Hash Code: 2

2

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 10

2

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 10

Hash Code: 0

2

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 10

Hash Code: 0

2

10

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 7

2

10

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 7

Hash Code: 2

2

10

[0]

[1]

[2]

[3]

[4]

Hash Function: int hash2(int elem) {
 return abs(elem) % numBuckets;
}

Input: 7

Hash Code: 2

7

10

2

Inserting into this chaining hash table is

O(1)

void HashTable::insert(int elem) {
 if (contains(elem)) return;

 int bucket = hash2(elem);
 ListNode *front = _buckets[bucket];

 // Create new front of list, tack previous onto end
 ListNode *cur = new ListNode{elem, front};
 _elements[bucket] = cur;
}

Say you got the following elements as inputs next:

17, 22, 92, 77

[0]

[1]

[2]

[3]

[4]

77

10

92 22 17 ...

With several collisions, our contains and remove will be

O(n)

Where n is the number of elements in the relevant bucket

Our goal is to get a strong hash function that:

● Distributes elements evenly (“spread”)

● Maintains a reasonable load factor

Load Factor
● The average number of elements in each bucket

○ If the load factor is low: wasted space
○ If the load factor is high: slow operations

● The load factor of a hash table with n elements and b
buckets is:

Strong Hash Functions
● There’s tons of research in designing strong hash

functions

● Beyond the scope of this class
○ CS161, CS166, CS265

HashSet

Assuming we have a strong hash function

Contains

Add

Remove

HashSet

Assuming we have a strong hash function

Contains O(n/b)

Add

Remove

HashSet

Assuming we have a strong hash function

Contains O(n/b)

Add O(n/b)

Remove

HashSet

Assuming we have a strong hash function

Contains O(n/b)

Add O(n/b)

Remove O(n/b)

With b chosen to be close to n, we
can approximate O(1) contains, add,

and remove

That’s just about as good as we can do! ✅

The Stanford library HashSet and
HashMap are implemented with hash

tables!

HashMap HashSet

Other uses of hash functions

Hash Functions
● Broadly, hash functions map a value to a unique

integer value

● Presents in several CS domains

Hash Functions
● The magic of hash functions:

○ They can take in any value and boil it down to a
unique number

○ Images, ADTs, files, etc.

● Thought question: how would you hash a string?
○ Length?
○ ASCII representation?
○ What about an image?

Hash Functions

Goal: different values should produce
very different hash codes

CS253: Web Security

CS145: Data Management and Data Systems

Cryptographic Hash Functions
● Hash functions used in a security context

● One-way function: can’t reverse

● Most popular: SHA-256

● More in CS155, CS 253, CS255

Have a great break! 🥳

END

