

Welcome to CS106B!
● Visit the course website at

https://cs106b.stanford.edu
for access to materials for today:
● Course Syllabus
● Course Calendar
● Course Placement Info
● Honor Code Policies
● Assignment 0

https://cs106b.stanford.edu/

Who's Here Today?
● Aero/Astro
● Afro-American

Studies
● Anthropology
● Art History
● Biochemistry
● Bioengineering
● Biology
● Biomedical

Informatics
● Business
● Chemistry
● Civil/Env. Engr
● Classics
● Creative Writing

● Intl. Relations
● Latin Amer. Studies
● Law
● Mech. Engineering
● MS&E
● Neuroscience
● Physics
● Psychology
● Public Policy
● Statistics
● TAPS
● Undeclared!
● Urban Studies

● Comparative Lit
● CSRE
● Computer Science
● CME
● Earth Systems
● Economics
● Education
● Electrical

Engineering
● Energy Resources
● Epidemiology
● Human Biology
● Immunology
● International Policy

Course Staff

Instructor: Keith Schwarz
(htiek@cs.stanford.edu)

Head TA: Neel Kishnani
(neelk@stanford.edu)

The CS106B Section Leaders
The CS106B Course Helpers

mailto:htiek@cs.stanford.edu
mailto:neelk@stanford.edu

Asking Questions
● We’ve set up an online system you can use to ask us

questions in lecture.
● First, visit our EdStem page. It’s linked through the

course Canvas and also available here:

https://edstem.org/us/courses/16604/
● Next, find the pinned thread at the top entitled

L00: Introduction
● Once you’ve found that thread, give it a to let us know ❤

you’ve found it.
● Post any questions as a response to this thread. The

course staff will respond to questions as they come in. I’ll
periodically take time out of lecture to go over some of the
more popular ones.

https://edstem.org/us/courses/16604/

https://cs106b.stanford.edu

Course Website

https://cs106b.stanford.edu/

Prerequisites

CS106A
(or equivalent)

(check out our course placement page if you’re unsure!)

https://cs106b.stanford.edu/course_placement

Textbook Options
● The course textbook

has excellent
explanations of course
topics and is a great
reference for C++ as
we’ll use it in this
course.

● There’s also a
draft version
available online that
you can use this
quarter.

http://web.stanford.edu/dept/cs_edu/BXReader-Beta-2012.pdf

Grading Policies

40% Assignments
25% Midterm Exam
30% Final Exam
5% Section Participation

Grading Policies

Ten Assignments

(One intro assignment that
goes out today, nine

programming assignments)

40% Assignments
25% Midterm Exam
30% Final Exam
5% Section Participation

Grading Policies

Midterm Exam

Goes out Friday, February 4th

Due Sunday, February 6th

40% Assignments
25% Midterm Exam
30% Final Exam
5% Section Participation

Grading Policies

Final Exam

Goes out Friday, March 11th

Due Monday, March 14th

Grading Policies

40% Assignments
25% Midterm Exam
30% Final Exam
5% Section Participation

Discussion Sections

Weekly sections.
Let’s talk about them!

Discussion Sections
● There are weekly discussion sections in CS106B. Section

attendance is required.
● Sign up between Thursday, January 6th at 5:00PM Pacific

and Sunday, January 9th at 5:00PM Pacific by visiting
https://cs198.stanford.edu/cs198/auth/default.aspx

● We don’t look at Axess for section enrollments. Please
make sure to sign up here even if you’re already enrolled
on Axess.

● Looking forward: some of the later assignments can be
done in pairs. You must be in the same section as
someone to partner with them. You may want to start
thinking about folks you’d like to partner with.

https://cs198.stanford.edu/cs198/auth/default.aspx

CS100B
● CS100B is an optional, one-unit add-on to

CS106B that provides extra practice with the
material.
● It’s run in addition to, rather than in place of, the

normal CS106B weekly discussion sections.
● It’s run through the School of Engineering’s

ACE program. The application is available
online here:

https://forms.gle/WwhfG7Zdyhpa8Gi97
● Questions? Contact Breauna Spencer at

bspence2@stanford.edu.

https://forms.gle/WwhfG7Zdyhpa8Gi97
mailto:bspence2@stanford.edu

What's Next in Computer Science?

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.
To that end:
● Explore common abstractions for

representing problems.
Harness recursion and understand how to
think about problems recursively.
Quantitatively analyze different approaches
for solving problems.

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

http://www.publicdomainpictures.net/pictures/10000/velka/1-1265899974oKJ9.jpg

Sentence

Subject Verb Phrase Object

CS106B

Adverb Verb Possessive Noun

totally rocks my socks

Noun

http://en.wikipedia.org/wiki/File:Tree_of_life_SVG.svg

Hey, that's
us!

This structure is called a tree.
Knowing how to model, represent,
and manipulate trees in software

makes it possible to solve interesting
problems.

Building a vocabulary of abstractions
makes it possible to represent and solve a

wider class of problems.

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.
To that end:

Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.
Quantitatively analyze different approaches
for solving problems.

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

http://www.marketoracle.co.uk/images/2010/Oct/fractal-tree2.jpg

A recursive solution is a solution that is
defined in terms of itself.

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Goals for this Course

Learn how to model and solve
complex problems with computers.
To that end:

Explore common abstractions for
representing problems.
Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Source: https://datacenterfrontier.com/year-hyperscale-facebook-growth-innovation/

There are many ways to solve the same
problem. How do we quantitatively talk

about how they compare?

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

Who's Here Today?
● Aero/Astro
● Afro-American

Studies
● Anthropology
● Art History
● Biochemistry
● Bioengineering
● Biology
● Biomedical

Informatics
● Business
● Chemistry
● Civil/Env. Engr
● Classics
● Creative Writing

● Intl. Relations
● Latin Amer. Studies
● Law
● Mech. Engineering
● MS&E
● Neuroscience
● Physics
● Psychology
● Public Policy
● Statistics
● TAPS
● Undeclared!
● Urban Studies

● Comparative Lit
● CSRE
● Computer Science
● CME
● Earth Systems
● Economics
● Education
● Electrical

Engineering
● Energy Resources
● Epidemiology
● Human Biology
● Immunology
● International Policy

Transitioning to C++

Transitioning to C++
● I’m assuming that the majority of you are

either coming out of CS106A in Python
coming from AP CS in Java.

● In this course, we’ll use the C++
programming language.

● Learning a second programming
language is way easier than learning a
first. You already know how to solve
problems; you just need to adjust the
syntax you use.

Our First C++ Program

Perfect Numbers
● A positive integer n is called a perfect

number if it’s equal to the sum of its positive
divisors (excluding itself).

● For example:
● 6 is perfect since 1, 2, and 3 divide 6 and

1 + 2 + 3 = 6.
● 28 is perfect since 1, 2, 4, 7, and 14 divide 28 and

1 + 2 + 4 + 7 + 14 = 28.
● 35 isn’t perfect, since 1, 5, and 7 divide 35 and

1 + 5 + 7 ≠ 35.
● Let’s find the first four perfect numbers.

def sumOfDivisorsOf(n):
 """Returns the sum of the positive divisors of the number n >= 0."""
 total = 0

 for i in range(1, n):
 if n % i == 0:
 total += i

 return total;

found = 0 # How many perfect numbers we've found
number = 1 # Next number to test

Keep looking until we've found four perfect numbers.
while (found < 4):
 # A number is perfect if the sum of its divisors is equal to it.
 if sumOfDivisorsOf(number) == number:
 print(number)
 found += 1

 number += 1

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, indentation
alone determines nesting.

In C++, indentation is
nice, but curly braces

alone determine nesting.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, newlines mark
the end of statements.

In C++, individual
statements must have a
semicolon (;) after them.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, you print output by
using print().

In C++, you use the stream
insertion operator (<<) to push

data to the console. (Pushing
endl prints a newline.)

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, you can optionally put
parentheses around conditions in
if statements and while loops.

In C++, these are mandatory.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

Python and C++ each have for
loops, but the syntax is different.

(Check the textbook for more
details about how this works!)

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

C++ has an operator ++ that
means “add one to this variable’s
value.” Python doesn’t have this.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, comments start with # and
continue to the end of the line.

In C++, there are two styles of
comments. Comments that start with

/* continue until */. Comments that start
with // continue to the end of the line.

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, each object has a
type, but it isn’t stated

explicitly.

In C++, you must give a type
to each variable. (The int

type represents an integer.)

#include <iostream>
using namespace std;

/* Returns the sum of the positive divisors of the number n >= 0. */
int sumOfDivisorsOf(int n) {
 int total = 0;

 for (int i = 1; i < n; i++) {
 if (n % i == 0) {
 total += i;
 }
 }

 return total;
}

int main() {
 int found = 0; // How many perfect numbers we've found
 int number = 1; // Next number to test

 /* Keep looking until we've found four perfect numbers. */
 while (found < 4) {
 /* A number is perfect if the sum of its divisors is equal to it. */
 if (sumOfDivisorsOf(number) == number) {
 cout << number << endl;
 found++;
 }

 number++;
 }

 return 0;
}

In Python, statements can be either in
a function or at the top level of the

program.

In C++, all statements must be inside
of a function.

Why do we have both C++ and Python?

C++ and Python
● Python is a great language for data processing and writing

quick scripts across all disciplines.
● It’s pretty quick to make changes to Python programs and then

run them to see what’s different.
● Python programs, generally, run more slowly than C++

programs.
● C++ is a great language for writing high-performance

code that takes advantage of underlying hardware.
● Compiling C++ code introduces some delays between changing

the code and running the code.
● C++ programs, generally, run much faster than Python

programs.
● Knowing both languages helps you use the right tool for

the right job.

C++: The Basics

 /* C++ Version */
 double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 void printNumber(int n) {
 cout << "I like " << n << endl;
 }

 """ Python Version """
 def areaOfCircle(r):
 return math.pi * r * r

 def maxOf(first, second):
 if first > second:
 return first
 return second

 def printNumber(n):
 print("I like " + str(n))

 // JavaScript Version
 function areaOfCircle(r) {
 return Math.PI * r * r;
 }

 function maxOf(first, second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 function printNumber(n) {
 console.log("I like " + n);
 }

 /* Java Version */
 private double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 private int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 private void printNumber(int n) {
 System.out.println("I like " + n);
 }

 /* C++ Version */
 double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 void printNumber(int n) {
 cout << "I like " << n << endl;
 }

 """ Python Version """
 def areaOfCircle(r):
 return math.pi * r * r

 def maxOf(first, second):
 if first > second:
 return first
 return second

 def printNumber(n):
 print("I like " + str(n))

 // JavaScript Version
 function areaOfCircle(r) {
 return Math.PI * r * r;
 }

 function maxOf(first, second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 function printNumber(n) {
 console.log("I like " + n);
 }

 /* Java Version */
 private double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 private int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 private void printNumber(int n) {
 System.out.println("I like " + n);
 }

Functions in C++ work like functions in
Python/JavaScript or like methods
in Java. They (optionally) take in

parameters, perform a calculation, then
(optionally) return a value.

 /* C++ Version */
 double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 void printNumber(int n) {
 cout << "I like " << n << endl;
 }

 """ Python Version """
 def areaOfCircle(r):
 return math.pi * r * r

 def maxOf(first, second):
 if first > second:
 return first
 return second

 def printNumber(n):
 print("I like " + str(n))

 // JavaScript Version
 function areaOfCircle(r) {
 return Math.PI * r * r;
 }

 function maxOf(first, second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 function printNumber(n) {
 console.log("I like " + n);
 }

 /* Java Version */
 private double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 private int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 private void printNumber(int n) {
 System.out.println("I like " + n);
 }

You define a function by writing

return-type fn-name(args) {
 // … code goes here …
}

 /* C++ Version */
 double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 void printNumber(int n) {
 cout << "I like " << n << endl;
 }

 """ Python Version """
 def areaOfCircle(r):
 return math.pi * r * r

 def maxOf(first, second):
 if first > second:
 return first
 return second

 def printNumber(n):
 print("I like " + str(n))

 // JavaScript Version
 function areaOfCircle(r) {
 return Math.PI * r * r;
 }

 function maxOf(first, second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 function printNumber(n) {
 console.log("I like " + n);
 }

 /* Java Version */
 private double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 private int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 private void printNumber(int n) {
 System.out.println("I like " + n);
 }

All variables in C++ need a type. Some
common types include int (integer),

double (real number), and
bool (true/false),

 /* C++ Version */
 double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 void printNumber(int n) {
 cout << "I like " << n << endl;
 }

 """ Python Version """
 def areaOfCircle(r):
 return math.pi * r * r

 def maxOf(first, second):
 if first > second:
 return first
 return second

 def printNumber(n):
 print("I like " + str(n))

 // JavaScript Version
 function areaOfCircle(r) {
 return Math.PI * r * r;
 }

 function maxOf(first, second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 function printNumber(n) {
 console.log("I like " + n);
 }

 /* Java Version */
 private double areaOfCircle(double r) {
 return M_PI * r * r;
 }

 private int maxOf(int first, int second) {
 if (first > second) {
 return first;
 }
 return second;
 }

 private void printNumber(int n) {
 System.out.println("I like " + n);
 }

If a function does not return a
value, its return type should

be the cool-but-scary-sounding
void.

Your Action Items
● Read Chapter 1 of the textbook.

● Use this as an opportunity to get comfortable with the
basics of C++ programming and to read more
examples of C++ code.

● Start Assignment 0.
● Assignment 0 is due this Friday half an hour before the

start of class (10:30AM Pacific time). The assignment
and its starter files are up on the course website.

● No programming involved, but you’ll need to get your
development environment set up.

● There’s a bunch of documentation up on the course
website. Please feel free to reach out to us if there’s
anything we can do to help out!

Next Time
● Welcome to C++!

● Defining functions.
● Basic arithmetic.
● Writing loops.

● Introduction to Recursion
● A new perspective on problem-solving.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

