

Thinking Recursively
Part II

Outline for Today
● The Recursive Leap of Faith

● On trusting the contract.
● Enumerating Subsets

● A classic combinatorial problem.
● Decision Trees

● Generating all solutions to a problem.
● Wrapper Functions

● Hiding parameters and keeping things clean.

Some Quick Refreshers

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

Formulate a hypothesis,
but don’t post anything

in chat just yet. 😃

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

Now, private chat me
your best guess. Not
sure? Just answer “??”

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Program

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Program

{1, 2, 3, 4}

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Program

{1, 2, 3, 4}

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Program

{1, 2, 3, 4}
{1, 2}

Set Refresher
● What’s printed at Line A and Line B?

Set<int> mySet = {1, 2, 3};

cout << (mySet + 4) << endl; // Line A

cout << (mySet - 3) << endl; // Line B

{1, 2, 3}

Set<int> mySet

Program

{1, 2, 3, 4}
{1, 2}

Recursion Refresher
● What does this code print?

void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
}

squigglebah(2);

Formulate a hypothesis,
but don’t post anything

in chat just yet. 😃

Recursion Refresher
● What does this code print?

void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
}

squigglebah(2);

Now, private chat me
your best guess. Not
sure? Just answer “??”

 squigglebah(2);

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

0
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

0
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

0
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

Program

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

Program

1

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n void squigglebah(int n) {

 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

1
int n

Program

1

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

Program

1

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

Program

1

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

Program

1
2

 squigglebah(2);
 void squigglebah(int n) {
 if (n != 0) {
 squigglebah(n - 1);
 cout << n << endl;
 }
 }

2
int n

Program

1
2

 squigglebah(2);

Program

1
2

 squigglebah(2);

Program

1
2

The Recursive Leap of Faith

The Contract

bool isVowel(char ch);

The Contract

bool isVowel(char ch);

I give you a
character.

The Contract

bool isVowel(char ch);

I give you a
character.

You tell me
if it’s a
vowel.

The Contract

bool isVowel(char ch) {
 ch = toLowerCase(ch);
 return ch == 'a' ||
 ch == 'e' ||
 ch == 'i' ||
 ch == 'o' ||
 ch == 'u';
}

The Contract

bool isVowel(char ch) {
 switch(ch) {
 case 'A': case 'a':
 case 'E': case 'e':
 case 'I': case 'i':
 case 'O': case 'o':
 case 'U': case 'u':
 return true;
 default:
 return false;
 }
}

The Contract

bool isVowel(char ch) {
 ch = tolower(ch);
 return string("aeiou").find(ch) != string::npos;
}

The Contract

bool isVowel(char ch);

I give you a
character.

You tell me
if it’s a
vowel.

The Contract

The Contract

bool hasConsecutiveVowels(const string& str);

The Contract

bool hasConsecutiveVowels(const string& str);

I give you a
string.

The Contract

bool hasConsecutiveVowels(const string& str);

I give you a
string.

You tell me if it
has two or more
consecutive letters
that are vowels.

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (str[i – 1] is a vowel && str[i] is a vowel) {
 return true;
 }
 }

}

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (str[i – 1] is a vowel && str[i] is a vowel) {
 return true;
 }
 }

}

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (str[i – 1] is a vowel && str[i] is a vowel) {
 return true;
 }
 }

}

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (str[i – 1] is a vowel && str[i] is a vowel) {
 return true;
 }
 }
 return false;
}

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (isVowel(str[i - 1]) && isVowel(str[i])) {
 return true;
 }
 }
 return false;
}

Trusting the Contract

bool isVowel(char ch);

bool hasConsecutiveVowels(const string& str) {
 for (int i = 1; i < str.length(); i++) {
 if (isVowel(str[i - 1]) && isVowel(str[i])) {
 return true;
 }
 }
 return false;
}

It doesn’t matter how
isVowel is implemented.
We just trust that it

works.

The Contract

The Contract

string reverseOf(const string& input);

The Contract

string reverseOf(const string& input);

I give you
a string.

The Contract

string reverseOf(const string& input);

I give you
a string.

You give me
its reverse.

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {

 } else {

 }
}

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {

 } else {

 }
}

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {
 return "";
 } else {

 }
}

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {
 return "";
 } else {
 return the reverse of input.substr(1) + input[0];
 }
}

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {
 return "";
 } else {
 return reverseOf(input.substr(1)) + input[0];
 }
}

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {
 return "";
 } else {
 return reverseOf(input.substr(1)) + input[0];
 }
}

Trusting the Contract

string reverseOf(const string& input);

string reverseOf(const string& input) {
 if (input == "") {
 return "";
 } else {
 return reverseOf(input.substr(1)) + input[0];
 }
}

It doesn’t matter how
reverseOf reverses
the string. It just

matters that it does.

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

… at this
position …

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

… that’s this
big …

… at this
position …

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

… that’s this
big …

… facing
this way …

… at this
position …

The Contract

void drawTree(double x, double y,
 double height,
 double angle,
 int order);

Draw me
a tree…

… that’s this
big …

… facing
this way …

… with this
order.

… at this
position …

The Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 draw a tree angling to the left
 draw a tree angling to the right
}

Trusting the Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 draw a tree angling to the left
 draw a tree angling to the right
}

Trusting the Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 draw a tree angling to the left
 draw a tree angling to the right
}

Trusting the Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 draw a tree angling to the left
 draw a tree angling to the right
}

Trusting the Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 drawTree(/* … */);
 drawTree(/* … */);
}

Trusting the Contract

void drawTree(double x, double y,
 double height, double angle,
 int order);

void drawTree(double x, double y,
 double height, double angle,
 int order) {
 if (order == 0) return;

 GPoint endpoint = drawPolarLine(/* … */);

 drawTree(/* … */);
 drawTree(/* … */);
}

Trusting the Contract

It doesn’t matter how
drawTree draws a

tree. It just matters
that it does.

The Recursive Leap of Faith
● When writing a recursive function, it helps to take

a recursive leap of faith.
● Before writing the function, answer these

questions:
● What does the function take in?
● What does it return?

● Then, as you’re writing the function, trust that
your recursive calls to the function just “work”
without asking how.

● This can take some adjustment to get used to, but
is a necessary skill for writing more complex
recursive functions.

Time-Out for Announcements!

Assignment 3
● Assignment 3 (Recursion!) goes out today. It’s due

next Friday at 10:30AM.
● Play around with recursion and recursive problem-solving!

● This assignment may be completed in pairs.
Some reminders:
● You are not required to work in a pair. It’s totally fine to

work independently.
● If you do work in a pair, you must work with someone else

in your discussion section.
● Work together, not separately. Doing only half the

assignment teaches you less than half the concepts.
Working collaboratively and interactively with your partner
will improve your learning outcomes.

LaIR Updates
● Starting Sunday, there will be two ways to get help at the LaIR.
● In-Person:

● Visit Room 353 of the Durand building, next to the Engineering Quad.
– Take the elevator to the third floor and turn right. Your ID card will let you in at the

building’s front entrance.
– Please only visit Durand 353 unless directed otherwise – other people may be

working in the building and we haven’t reserved other rooms there.
– Exercise common courtesy with the building: please clean up any messes you make,

etc. 😃
● Remotely:

● You can sign up as you did before using the link below rather than the
previous OhYay link.

● In either case, use the following link to sign up for help:
 ☞ https://cs198.stanford.edu/lair ☜

● If you’re in person, say which room you’re in when signing up. If
you’re remote, paste a Zoom link for your location.

https://cs198.stanford.edu/lair

Section Updates
● Starting next week, sections will return

to in-person instruction.
● Section locations are available online at

https://cs198.stanford.edu. Log in to see
your section location.

https://cs198.stanford.edu/

Back to CS106B!

Recursive Enumeration

e·nu·mer·a·tion
noun

The act of mentioning a number
of things one by one.

(Source: Google)

You need to send an emergency
team of doctors to an area.

You know which doctors you
have available to send.

List all the possible teams you
can make from your list of all the

doctors.

 ✓ ×

… … … …

 ✓ ✓ × ×

This structure is called a decision tree.

List all subsets of
{A, H, I}

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{A, H} {A} {H} { }

{A} { }

{ }

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I} {H, I}

{A,H,I}

{A, H} {A} {H} { }

{A} { }

{ }

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I} {H, I}

{A,H,I}

{A, H} {A} {H} { }

{A} { }

{ }

At each step, we need to know

 1. what elements we haven’t
considered yet, and

 2. what we’ve already chosen
to put in our set.

The Contract

void listSubsetsOf(const Set<int>& elems,
 const Set<int>& soFar);

The Contract

void listSubsetsOf(const Set<int>& elems,
 const Set<int>& soFar);

List all the
subsets of

elems…

The Contract

void listSubsetsOf(const Set<int>& elems,
 const Set<int>& soFar);

List all the
subsets of

elems…

… given that we’ve
already committed
to choosing the
integers in soFar.

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I} {H, I}

{A,H,I}

{A, H} {A} {H} { }

{A} { }

{ }

A?

I?

{A,H,I} {A, H} {A, I} {A} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I} {H, I}

{A,H,I}

{A, H} {A} {H} { }

{A} { }

{ }

{H, I}

A?

I?

{A,H,I} {A, H} {A, I} {A} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I} {H, I}

{A,H,I}

{A, H} {A} {H} { }

{A} { }

{ }

Base case: If all
decisions have already
been made, print out

the result of those
choices.

{H, I}

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 ×

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I}

{A,H,I}

{A, H} {A} {H} { }

{A}

{ }

H?

 × ✓
{H, I}

{ }

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 ×

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I}

{A,H,I}

{A, H} {A} {H} { }

{A}

{ }

H?

 × ✓
{H, I}

{ }

Recursive case: Pick
some element we

haven’t decided about
yet. Try all possible

choices for what to do
next.

A?

I?

{A,H,I} {A, H} {A, I} {A} {H, I} {H} {I} { }

I? I? I?

H? H?

 ✓ ×

 ✓

 ✓

 ✓ ✓ ✓ × × ×

 × × ✓

 ×

List all subsets of
{A, H, I}

{ I } { I } { I } { I }

{H, I} {H, I}

{A,H,I}

{A, H} {A} {H} { }

{A} { }

{ }

void listSubsetsOf(const Set<int>& elems,
 const Set<int>& soFar) {

 if (elems.isEmpty()) {
 cout << soFar << endl;
 } else {
 int elem = elems.first();
 Set<int> remaining = elems - elem;

 /* Option 1: Include this element. */
 listSubsetsOf(remaining, soFar + elem);

 /* Option 2: Exclude this element. */
 listSubsetsOf(remaining, soFar);
 }
}

Decisions
yet to be

made

Decisions
already
made

Base Case:
No decisions

remain.

Recursive Case:
Try all options for
the next decision.

A Question of Parameters

 listSubsetsOf({1, 2, 3}, {});

 listSubsetsOf({1, 2, 3}, {});

 listSubsetsOf({1, 2, 3}, {});

I certainly must tell you
which set I’d like

to form subsets of!

 listSubsetsOf({1, 2, 3}, {});

 listSubsetsOf({1, 2, 3}, {});

Pass in an empty set every
time I call this function?

Most Unorthodox!

 listSubsetsOf({1, 2, 3});

 listSubsetsOf({1, 2, 3});

This is more acceptable
in polite company!

Wrapper Functions
● Some recursive functions

need extra arguments as
part of an
implementation detail.
● In our case, the set of

things chosen so far is not
something we want to
expose.

● A wrapper function is a
function that does some
initial prep work, then
fires off a recursive call
with the right arguments.

Caller

Recursive Function

Wrapper Function

Summary For Today
● Making the recursive leap of faith and

trusting that your recursive calls will
perform as expected helps simplify writing
recursive code.

● A decision tree models all the ways you
can make choices to arrive at a set of
results.

● A wrapper function makes the interface of
recursive calls cleaner and harder to
misuse.

Your Action Items
● Read Chapter 8.

● There’s a lot of great information there about
recursive problem-solving, and it’s a great
resource.

● Start Assignment 3
● Aim to complete the Sierpinski Triangle and

Human Pyramids by our Monday lecture.
● If you have time, start tinkering around with

“What Are YOU Doing?”

Next Time
● Iteration + Recursion

● Combining two techniques together.
● Enumerating Permutations

● What order should we perform tasks in?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118

