Thinking Recursively

Part 1V



Outline for Today

* Recap From Last Time
 Where are we, again?

* Fnumerating Combinations
 Forming a majority opinion.

 Shrinkable Words

» A little word puzzle!



Recap from Last Time



List all subsets of Each decision is of
{A, H, I} A? the form “do I
: include this item?”

{AH,I}

-

H? H?

{H, I} {H, I}




Each decision is of
the form “which item
do I pick next?”

List all permutations of
{A, H, I}
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Base Case: No
decisions remain.

ResultType exploreRec(decisions remaining,
decisions already made) {

 1f (no decisions remain) {

return decisions made;

L } else {

 ResultType result;

for (each possible next choice) {

result += exploreRec(all remaining decisions,
decisions made + that choice);
}

\ return result;

}
}

Recursive Case:
Try all options for
the next decision.

ResultType exploreAllTheThings(initial state) {
return exploreRec(initial state, no decisions made);
}



New Stuff!



Enumerating Combinations



You need at least five US Supreme
Court justices to agree to set a
precedent.




Generating Combinations

 Suppose that we want to find every way to choose exactly one
element from a set.

« We could do something like this:
for (int x: mySet) {
cout << x << endl;



Generating Combinations

 Suppose that we want to find every way to choose exactly two
elements from a set.

« We could do something like this:
for (int x: mySet) {
for (int y: mySet) {

if (x !=y) {
cout << x << ", " <<y << endl;



Generating Combinations

 Suppose that we want to find every way to choose exactly three
elements from a set.

« We could do something like this:
for (int x: mySet) {
for (int y: mySet) {
for (int z: mySet) {
if (x '=y & x !'=z & vy !=12) {

cout << x << ", " <<y << ", " << 7z << endl;



Generating Combinations

* If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

« But what if we don't know in advance?

 Or we do know in advance, but it’s a
reasonably large number and we don’t
want to write a huge number of nested
loops and complicated if statements?



combinationsOf(const Set<string>& elems,
int numToPick);



Given this set of
elements 1o pick
from..

r T

combinationsOf(const Set<string>& elems,
int numToPick);



Given this set of
elements 1o pick
from..

r N

combinationsOf(const Set<string>& elems,
iqt numToPi;B);

. vefurn all the
ways To pick This
many ot them,




Given this set of
elements 1o pick
from..

~ ~~

22?2 combinationsOf(const Set<string>& elems,
iqt numToPi;B);

. vefurn all the
ways To pick This
many ot them,




Given this set of
elements 1o pick
from..

22?2 combinationsOf(const Set<string>& elems,
iqt numToPi;B);

What should this
tunction’s refurn type
be ?

. refurn all the

Formulate a hypothesis, ways To pick this
but don’t post anything
in chat just yet.

many ot them,




Given this set of
elements 1o pick
from..

22?2 combinationsOf(const Set<string>& elems,
iqt numToPi;B);

What should this
tunction’s refurn type
be ?

. refurn all the

Now, private chat me ways tTo pick This
your best guess. Not
sure? Just answer “??”

many ot them,




Implementing Combinations



Our Base Case
p

Pick O more Justices out of
{Kagan, Breyer}

Chosen so far:
{Alito, Roberts, Gorsuch,
Thomas, Sotomayor}

< 4

There’s no need to
keep looking.

What should we
return in this
case”?




Our Base Case, Part 11
e

Pick 5 more Justices out of
{Sotomayor, Thomas}

Chosen so far: { }

< 4

There is no way to
do this!

What should we
return in this
case”?




Generating Combinations
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Generating Combinations




Generating Combinations




Generating Combinations
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Option 1:
Exclude this

person.




Generating Combinations
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Generating Combinations
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Option 1: Q
Exclude this

person.




Generating Combinations

(\O\ne way To choose
5 elements out of 9 is
to exclude the first
element, then To choose

5 elements out ot the
remaining 8.

Option 1:
Exclude this

person.




Generating Combinations
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Generating Combinations




Generating Combinations




Generating Combinations
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Option 2: Q
Include this

person.




Generating Combinations
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Option 2: Q
Include this

person.




Generating Combinations
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Option 2: Q
Include this

person.




Generating Combinations

o o

One way To choose

5 elements out of 9

~|is To include the first
Q element, then choose
4 elements out of
The remaining 8,

Option 2:
Include this

person.




A Comment on Types



The Wondertul auto Keyword

 There are many cases in which there is
exactly one possible type that a variable
could have.

* In that case, rather than explicitly writing
out the type, you can use the auto keyword:

auto var = expression;

 While in principle you can use this in many
places, we recommend just using it to save
typing when working with container types.



A Little Word Puzzle



“What nine-letter word can be reduced to a
single-letter word one letter at a time by
removing letters, leaving it a legal word at
each step?”



The Startling Truth?

T A

R

N




The Startling Truth?

TARTIN




The Startling Truth?

STARTING




The Startling Truth?

STRINAG




The Startling Truth?

ST I NG




The Startling Truth?

S I NG




The Startling Truth?

S I N




The Startling Truth?

I N




The Startling Truth?




Is there really just one nine-letter
word with this property?



All Possible Paths

CART

. because ‘art” is
shrinkable ..

ART

CRT

CAT

. because ‘at” is

‘Car1” is
shrinkable..

CAR

shrinkable ..

RT AT A
VAV V/\V VA . because ‘a’ is a
T R T A Rl single=lefter word.




All Possible Paths




All Possible Paths

‘Vp” is not
shrinkable..

upP

. because neither
P nor U are words,



All Possible Paths

‘Cup” is not
shrinkable.. cUP

. because none of ’////I\\\\‘
These are shrinkable

words, UP CP CU




All Possible Paths

‘Cusp” is not
shrinkable..

CUSP

CcupP

.. because none of
these are shrinkable
words,




Shrine.. WoOrds

A shrinkable word is a word that can be reduced
down to one letter by removing one character at a
time, leaving a word at each step.

 Base Cases:

« A string that is not a word is not a shrinkable word.
« Any single-letter word is shrinkable (A, I, and O).
* Recursive Step:

« A multi-letter word is shrinkable if you can remove
a letter to form a shrinkable word.

« A multi-letter word is not shrinkable if no matter
what letter you remove, it’s not shrinkable.



Your Action Items

* Read Chapter 9 of the textbook.

* There’s tons of cool backtracking examples
there, and it will help you prep for Friday.

 Keep working on Assignment 3.

« Ask for help if you need it! That’s what we’re
all here for.



Next Time

* Output Parameters

* Recovering the solution to a backtracking
problem.

« More Backtracking
* Techniques in searching for feasibility.
 Closing Thoughts on Recursion

« It'll come back, but we’re going to focus on
other things for a while!
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