Thinking Recursively

Part 1V

Outline for Today

* Recap From Last Time
 Where are we, again?

* Fnumerating Combinations
 Forming a majority opinion.

 Shrinkable Words

» A little word puzzle!

Recap from Last Time

List all subsets of Each decision is of
{A, H, I} A? the form “do I
: include this item?”

{AH,I}

-

H? H?

{H, I} {H, I}

Each decision is of
the form “which item
do I pick next?”

List all permutations of
{A, H, I}

AHI
A nn
|
HI Al AH
H I A I A H
llAll X [llHll X [llIll
I H I A H A
IIAH" IIAI" IIHA" IIHI" IIIA" IIIH"
2 T TR TR
AHI AIH HAL HIA IAH IHA

Base Case: No
decisions remain.

ResultType exploreRec(decisions remaining,
decisions already made) {

 1f (no decisions remain) {

return decisions made;

L } else {

 ResultType result;

for (each possible next choice) {

result += exploreRec(all remaining decisions,
decisions made + that choice);
}

\ return result;

}
}

Recursive Case:
Try all options for
the next decision.

ResultType exploreAllTheThings(initial state) {
return exploreRec(initial state, no decisions made);
}

New Stuff!

Enumerating Combinations

You need at least five US Supreme
Court justices to agree to set a
precedent.

Generating Combinations

 Suppose that we want to find every way to choose exactly one
element from a set.

« We could do something like this:
for (int x: mySet) {
cout << x << endl;

Generating Combinations

 Suppose that we want to find every way to choose exactly two
elements from a set.

« We could do something like this:
for (int x: mySet) {
for (int y: mySet) {

if (x !=y) {
cout << x << ", " <<y << endl;

Generating Combinations

 Suppose that we want to find every way to choose exactly three
elements from a set.

« We could do something like this:
for (int x: mySet) {
for (int y: mySet) {
for (int z: mySet) {
if (x '=y & x !'=z & vy !=12) {

cout << x << ", " <<y << ", " << 7z << endl;

Generating Combinations

* If we know how many elements we want
in advance, we can always just nest a
whole bunch of loops.

« But what if we don't know in advance?

 Or we do know in advance, but it’s a
reasonably large number and we don’t
want to write a huge number of nested
loops and complicated if statements?

combinationsOf(const Set<string>& elems,
int numToPick);

Given this set of
elements 1o pick
from..

r T

combinationsOf(const Set<string>& elems,
int numToPick);

Given this set of
elements 1o pick
from..

r N

combinationsOf(const Set<string>& elems,
iqt numToPi;B);

. vefurn all the
ways To pick This
many ot them,

Given this set of
elements 1o pick
from..

~ ~~

22?2 combinationsOf(const Set<string>& elems,
iqt numToPi;B);

. vefurn all the
ways To pick This
many ot them,

Given this set of
elements 1o pick
from..

22?2 combinationsOf(const Set<string>& elems,
iqt numToPi;B);

What should this
tunction’s refurn type
be ?

. refurn all the

Formulate a hypothesis, ways To pick this
but don’t post anything
in chat just yet.

many ot them,

Given this set of
elements 1o pick
from..

22?2 combinationsOf(const Set<string>& elems,
iqt numToPi;B);

What should this
tunction’s refurn type
be ?

. refurn all the

Now, private chat me ways tTo pick This
your best guess. Not
sure? Just answer “??”

many ot them,

Implementing Combinations

Our Base Case
p

Pick O more Justices out of
{Kagan, Breyer}

Chosen so far:
{Alito, Roberts, Gorsuch,
Thomas, Sotomayor}

< 4

There’s no need to
keep looking.

What should we
return in this
case”?

Our Base Case, Part 11
e

Pick 5 more Justices out of
{Sotomayor, Thomas}

Chosen so far: { }

< 4

There is no way to
do this!

What should we
return in this
case”?

Generating Combinations
o © ®

-
® -

o o0®

Generating Combinations
o © ®

-
® -
@ O

®

Generating Combinations
o © ®

-
® -
@ O

®

Generating Combinations

Generating Combinations

Generating Combinations

@ @ ®
@0

Option 1:
Exclude this

person.

Generating Combinations

»
»

»

= \@ O
Exclude this

person.

Generating Combinations
o © ®
-

Option 1: Q
Exclude this

person.

Generating Combinations

(\O\ne way To choose
5 elements out of 9 is
to exclude the first
element, then To choose

5 elements out ot the
remaining 8.

Option 1:
Exclude this

person.

Generating Combinations
o © ®

-
® -
@ O

®

Generating Combinations

Generating Combinations

Generating Combinations

» ®

w

w

Option 2: Q
Include this

person.

Generating Combinations

o 0O

w

Option 2: Q
Include this

person.

Generating Combinations

» ®
e ®

Option 2: Q
Include this

person.

Generating Combinations

o o

One way To choose

5 elements out of 9

~|is To include the first
Q element, then choose
4 elements out of
The remaining 8,

Option 2:
Include this

person.

A Comment on Types

The Wondertul auto Keyword

 There are many cases in which there is
exactly one possible type that a variable
could have.

* In that case, rather than explicitly writing
out the type, you can use the auto keyword:

auto var = expression;

 While in principle you can use this in many
places, we recommend just using it to save
typing when working with container types.

A Little Word Puzzle

“What nine-letter word can be reduced to a
single-letter word one letter at a time by
removing letters, leaving it a legal word at
each step?”

The Startling Truth?

T A

R

N

The Startling Truth?

TARTIN

The Startling Truth?

STARTING

The Startling Truth?

STRINAG

The Startling Truth?

ST I NG

The Startling Truth?

S I NG

The Startling Truth?

S I N

The Startling Truth?

I N

The Startling Truth?

Is there really just one nine-letter
word with this property?

All Possible Paths

CART

. because ‘art” is
shrinkable ..

ART

CRT

CAT

. because ‘at” is

‘Car1” is
shrinkable..

CAR

shrinkable ..

RT AT A
VAV V/\V VA . because ‘a’ is a
T R T A Rl single=lefter word.

All Possible Paths

All Possible Paths

‘Vp” is not
shrinkable..

upP

. because neither
P nor U are words,

All Possible Paths

‘Cup” is not
shrinkable.. cUP

. because none of ’////I\\\\‘
These are shrinkable

words, UP CP CU

All Possible Paths

‘Cusp” is not
shrinkable..

CUSP

CcupP

.. because none of
these are shrinkable
words,

Shrine.. WoOrds

A shrinkable word is a word that can be reduced
down to one letter by removing one character at a
time, leaving a word at each step.

 Base Cases:

« A string that is not a word is not a shrinkable word.
« Any single-letter word is shrinkable (A, I, and O).
* Recursive Step:

« A multi-letter word is shrinkable if you can remove
a letter to form a shrinkable word.

« A multi-letter word is not shrinkable if no matter
what letter you remove, it’s not shrinkable.

Your Action Items

* Read Chapter 9 of the textbook.

* There’s tons of cool backtracking examples
there, and it will help you prep for Friday.

 Keep working on Assignment 3.

« Ask for help if you need it! That’s what we’re
all here for.

Next Time

* Output Parameters

* Recovering the solution to a backtracking
problem.

« More Backtracking
* Techniques in searching for feasibility.
 Closing Thoughts on Recursion

« It'll come back, but we’re going to focus on
other things for a while!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

