

Searching and Sorting
Part Two

Recap from Last Time

An Initial Idea: Selection Sort

An Initial Idea: Selection Sort

7 624 1

An Initial Idea: Selection Sort

7 624 1

An Initial Idea: Selection Sort

7 624 1

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 621 4

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

7 641 2

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

An Initial Idea: Selection Sort

741 2 6

Our Next Idea: Insertion Sort

Our Next Idea: Insertion Sort

7 2 1 64

Our Next Idea: Insertion Sort

7 2 1 64

Our Next Idea: Insertion Sort

7 2 1 64

Our Next Idea: Insertion Sort

7 2 1 64

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 64 7

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 1 674

Our Next Idea: Insertion Sort

2 6741

Our Next Idea: Insertion Sort

2 6741

Our Next Idea: Insertion Sort

2 6741

Our Next Idea: Insertion Sort

2 6741

Our Next Idea: Insertion Sort

2 641 7

Our Next Idea: Insertion Sort

2 641 7

Selection sort and insertion sort each
run in time O(n2) in the worst case.

Doubling the size of the
input quadruples the runtime.

Halving the size of the
input quarters the runtime.

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(½n) T(½n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

¼T(n) ¼T(n)

Thinking About O(n2)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

¼T(n) ¼T(n)

2 · ¼T(n) = ½T(n)

The Key Insight: Merge

The Key Insight: Merge

2 3 5 7 10

The Key Insight: Merge

2 3 5 7 10 1 4 6 8 9

The Key Insight: Merge

2 3 5 7 10 1 4 6 8 9

The Key Insight: Merge

2 3 5 7 10

1

4 6 8 9

The Key Insight: Merge

2

3 5 7 10

1

4 6 8 9

The Key Insight: Merge

2 3

5 7 10

1

4 6 8 9

The Key Insight: Merge

2 3

5 7 10

1 4

6 8 9

The Key Insight: Merge

2 3 5

7 10

1 4

6 8 9

The Key Insight: Merge

2 3 5

7 10

1 4 6

8 9

The Key Insight: Merge

2 3 5 7

10

1 4 6

8 9

The Key Insight: Merge

2 3 5 7

10

1 4 6 8

9

The Key Insight: Merge

2 3 5 7

10

1 4 6 8 9

The Key Insight: Merge

2 3 5 7 101 4 6 8 9

The Key Insight: Merge

2 3 5 7 101 4 6 8 9

Each step makes a single
comparison and reduces
the number of elements

by one.

If there are n total
elements, this algorithm

runs in time O(n).

“Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

“Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

“Split Sort”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1. Split the input in half.

2. Insertion sort each half.

3. Merge the halves back together.

New Stuff!

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(¼n) T(¼n) T(¼n) T(¼n)

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

T(n)

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

¹/₁₆ T(n) ¹/₁₆ T(n) ¹/₁₆ T(n) ¹/₁₆ T(n)

4 · ¹/₁₆ T(n) = ¼T(n)

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

“Double Split Sort”

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

1. Split the input into quarters.

2. Insertion sort each quarter.

3. Merge two pairs of quarters into halves.

4. Merge the two halves back together.

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prediction: This
should be four
times as fast as
insertion sort.

Splitting to the Extreme
● Splitting our array in half, sorting each

half, and merging the halves was twice
as fast as insertion sort.

● Splitting our array in quarters, sorting
each quarter, and merging the quarters
was four times as fast as insertion sort.

● Question: What happens if we never
stop splitting?

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 414 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

14 6 3 9 7 16 2 15 5 10 8 11 1 13 12 4

6 14 3 9 7 16 2 15 5 10 8 11 1 13 4 12

3 6 9 14 2 7 15 16 5 8 10 11 1 4 12 13

2 3 6 7 9 14 15 16 1 4 5 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

14 6 3 9 7 15 2 5 10 8 11 1 13 12 4

14 6 3 9 7 15 2 5 10 8 11 1 13 12 4

2 3 5 6 7 9 14 15 1 4 8 10 11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mergesort, Intuitively

Split array into
roughly equal

halves

Recursively
mergesort
each half

Merge sorted
subarrays

Recursion!

Mergsort
● A recursive sorting algorithm!
● Base Case:

● An empty or single-element list is already
sorted.

● Recursive step:
● Break the list in half and recursively sort

each part.
● Use merge to combine them back into a single

sorted list.

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) {
 return;
 }

 /* Split v into two subvectors. */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

How fast is mergesort?

First, the numbers.

Now, the theory!

This next section is the mathiest math
we’re going to do all quarter.

It’s great if you can follow along with it.

You aren’t expected to come up with
this on your own.

If you like this analysis, take CS161!

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) {
 return;
 }

 /* Split v into two subvectors. */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

O(n)
work

O(n)
work

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) {
 return;
 }

 /* Split v into two subvectors. */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

void mergesort(Vector<int>& v) {
 /* Base case: 0- or 1-element lists are
 * already sorted.
 */
 if (v.size() <= 1) {
 return;
 }

 /* Split v into two subvectors. */
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 /* Recursively sort these arrays. */
 mergesort(left);
 mergesort(right);

 /* Combine them together. */
 merge(left, right, v);
}

O(n)

O(n)

O(n)

O(n)

O(n)

How much work does
mergesort do at each level of

recursion?

O(n)

O(n)

O(n)

O(n)

O(n)

How many levels are there?

O(n)

O(n)

O(n)

O(n)

O(n)

Each recursive call cuts the
array size in half.

O(n)

O(n)

O(n)

O(n)

O(n)

After k layers of the recursion,
if the original array has size n,
each subarray has size n / 2k.

n / 2
elements

n / 8
elements

n / 1
elements

O(n)

O(n)

O(n)

O(n)

O(n)

The recursion stops when
we’re down to a single

element.

O(n)

O(n)

O(n)

O(n)

O(n)

What choice of k makes
n / 2k = 1?

Answer: k = log₂ n.

Useful intuition:
you can only cut
something in half

O(log n) times
before you run out

of elements.

O(n)

O(n)

O(n)

O(n)

O(n)

There are O(log n) levels in the recursion.

Each level does O(n) work.

Total work done: O(n log n).

Can we do Better?
● Mergesort runs in time O(n log n), which is faster than

insertion sort’s O(n2).
● Can we do better than this?
● A comparison sort is a sorting algorithm that only

learns the relative ordering of its elements by making
comparisons between elements.
● All of the sorting algorithms we’ve seen so far are

comparison sorts.
● Theorem: There are no comparison sorts whose

average-case runtime can be better than O(n log n).
● If we stick with making comparisons, we can only hope

to improve on mergesort by a constant factor!

A Quick Historical Aside
● Mergesort was one of the first algorithms

developed for computers as we know
them today.

● It was invented by John von Neumann in
1945 (!) as a way of validating the design
of the first “modern” (stored-program)
computer.

● Want to learn more about what he did?
Check out this article by Stanford’s very
own Donald Knuth.

https://fermatslibrary.com/s/von-neumanns-first-computer-program

Time-Out for Announcements!

Midterm Logistics
● The midterm went out today at 10:30AM. It’s due Sunday

at 10:30AM. It’s designed to take three hours, but you
have the whole 48 hours to work on it.

Best of luck on the exam – you can do this!
● We’ll be available on EdStem to answer logistical

questions about the exam and clarifying questions about
what’s being asked
● e.g. “the starter files won’t compile on my machine.”
● e.g. “when you say to put the wombat in the basket, do you

mean the green wombat or the blue wombat?”
● You’ll submit on Paperless, just as usual.

Assignment 5
● Assignment 5 (Bag’O Big-O) goes out

today. We don’t expect any of you are
even going to look at it until Monday, and
most of you won’t look at it until Tuesday.

● It’s substantially smaller than the other
assignments and has minimal coding. It’s
mostly about doing big-O analyses and
thinking about efficiency.

● We don’t recommend starting it this
weekend unless you actually want to.

lecture.notify_all();

(A C++ command to wake up parts of the program that
are sleeping and waiting for a signal to continue.)

Improving Mergesort

An Interesting Observation
● Big-O notation talks about long-term growth, but

says nothing about small inputs.
● For small inputs, insertion sort can be faster than

mergesort.

R
un

tim
e

Input Size

Mergesort

Insertion
SortInsertion

sort faster

Mergesort
faster

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}

Use insertion sort for small
inputs where insertion sort is

faster than mergesort.

Question to ponder: How
would you determine the value of

kCutoffSize to use?

Hybrid Mergesort

void hybridMergesort(Vector<int>& v) {
 if (v.size() <= kCutoffSize) {
 insertionSort(v);
 } else {
 int half = v.size() / 2;
 Vector<int> left = v.subList(0, half);
 Vector<int> right = v.subList(half);

 hybridMergesort(left);
 hybridMergesort(right);

 merge(left, right, v);
 }
}

Why Sort?

Suppose we want to search an array for an
element, and we know that array is sorted.

We could scan from left to right to find that
element, but that takes time O(n).

Can we take advantage of the fact that the
list is sorted?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Are any of
these numbers
equal to 106?

???? ? ? ?

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

137

Are any of
these numbers
equal to 106?

Can 106
be here?

Or here?
Or here?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

96

Are any of
these numbers
equal to 106?

Can 106
be here?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

103

Are any of
these numbers
equal to 106?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Are any of
these numbers
equal to 106?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Alas, 106 is not to be found here.

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

Each cup
contains a
number.

Numbers are
sorted from left

to right

Are any of
these numbers
equal to 106?

???? ? ? ?

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

101

Are any of
these numbers
equal to 106?

Can 106
be here?

Or here?

Or here?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

109

Are any of
these numbers
equal to 106?

Can 106
be here?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

106

Are any of
these numbers
equal to 106?

Each cup
contains a
number.

Numbers are
sorted from left

to right

Thanks to former head TA Dawson Zhou for this idea! Except he did it IRL.

This algorithm is called binary search.

bool binarySearchRec(const Vector<int>& elems, int key,
 int low, int high) {
 /* Base case: If we're out of elements, horror of horrors!
 * Our element does not exist.
 */
 if (low == high) return false;

 /* Probe the middle element. */
 int mid = low + (high - low) / 2;

 /* We might find what we're looking for! */
 if (key == elems[mid]) return true;

 /* Otherwise, discard half the elements and search
 * the appropriate section.
 */
 if (key < elems[mid]) {
 return binarySearchRec(elems, key, low, mid);
 } else {
 return binarySearchRec(elems, key, mid + 1, high);
 }
}

bool binarySearch(const Vector<int>& elems, int key) {
 return binarySearchRec(elems, key, 0, elems.size());
}

Question to ponder:
how does this code
correspond to the

example from earlier?

Binary Search
● How fast is binary search?

● Each round does a constant amount of work
(checking how the key relates to the middle).

● Each round tosses away half the elements.
● We can only toss away half the elements

O(log n) times before no elements are left.
● Worst-case runtime: O(log n).
● Question to ponder: what’s the best-case

runtime?
● This is exponentially faster than scanning

from the left to the right!

Why All This Matters
● Big-O notation gives us a quantitive way

to predict runtimes.
● Those predictions provide a quantitive

intuition for how to improve our
algorithms.

● Understanding the nuances of big-O
notation then leads us to design algorithms
that are better than the sum of their parts.

● We can use binary search to look inside
sorted sequences really, really quickly.

Next Time
● Designing Abstractions

● How do you build new container classes?
● Class Design

● What do classes look like in C++?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140

