Designing Abstractions

J* Crv %]
class Counter {
public:
void increment();
int total() const;

private:
int value = 0;

s

void Counter::increment() {
value++;

}

int Counter::total() const {

}

return value;

[* Java */
public class Counter {
public void increment() {
value++;

}
public int total() {

}

private int value = 0;

return value;

Python
class Counter:
def __init_ (self):
self.value = 0

def increment(self):
self.value += 1

def total(self):
return self.value

[/ JavaScript
class Counter {
constructor() {
this.value = 0;

1,
total() {

return this.value;
1,

increment() {

}

this.value++;

Designing Abstractions

ab-strac-tion
M

the process of considering
something independently of
Its associations, attributes, or

concrete accompaniments.

Source: Google

Vector Map

Set Queue

Building a rich vocabulary of abstractions
makes it possible to model and solve a
wider class of problems.

Question One:

How do we create new abstractions to
model ideas not precisely captured by the
standard container types?

Question Two:

How do the abstractions we’ve been using
so far work, and how can we use that
knowledge to build richer abstractions?

Classes in C++

Classes

Interface
* Vector, Stack, Queue, Map, (What it looks like)

etc. are classes in
C++.

 Classes contain

* an interface specitying
what operations can be
performed on instances
of the class.

Where
we’'ve been

Classes

Interface
(What it looks like)

* Vector, Stack, Queue, Map,
etc. are classes in
C++.

 Classes contain

* an interface specitying
what operations can be
performed on instances
of the class, and

* an implementation
specifying how those
operations are to be
performed.

|
|
A

Where we're Implefmentdiion
qoing (How it works)

Creating our own Classes

Random Bags

 Arandom bag is a data structure similar to a
stack or queue. It supports two operations:

* add, which puts an element into the random bag,
and

e remove random, which returns and removes a
random element from the bag.

« Random bags have a number of applications:
« Simpler: Shuffling a deck of cards.

 More advanced: designing mazes. (Curious how?
Come talk to me after class!)

» Let’s go create our own custom RandomBag type!

Classes in C++

* Defining a class in C++ (typically)
requires two steps:

* Create a header file (typically suffixed
with .h) describing what operations the class
can perform and what internal state it needs.

* Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of the class.

 Clients of the class can then include the
header file to use the class.

What’s in a Header?

What’s in a Header?

#pragma once

This is called an include
guard. It’s used to make
sure weird things don’t
happen if you include the
same header twice.

Curious how it works?
Come talk to me after
class!

What’s in a Header?

#pragma once

class RandomBag {

This is a class
definition. We're
creating a new class
called RandomBag. Like a
struct, this defines the
name of a new type
}; that we can use in our

programs.

What’s in a Header?

#pragma once

class RandomBag {

Don’t forget to add
this semicolon! You’ll

get some Hairy Scary
Compiler Errors if you
. leave it out.

What’s in a Header?

#pragma once

Interface
(What it looks like)

class RandomBag {
public:

private:

s

Impl ementatl on
(How it works)

What’s in a Header?

#pragma once

class RandomBag {
public:

private:

s

What’s in a Header?

#pragma once The public interface

specifies what
functions you can call

on objects of this type.

class RandomBag { .
public: Think things like the

A Vector’s .add() function
or the string’s .find().

private:

s

What’s in a Header?

#pragma once

class RandomBag {

public:

private:

s

\

b

}

The public interface
specifies what
functions you can call
on objects of this type.

Think things like the
Vector’s .add() function
or the string’s .find().

The private implementation
contains information that
objects of the class type will
need in order to do their job
properly. This is invisible to
people using the class.

What’s in a Header?

#pragma once

class RandomBag {
public:
voild add(int value);
int removeRandom();

private:

s

These are member
functions of the
RandomBag class. They're
functions you can call

on objects of the type
RandomBag.

All member functions
need to be declared in
the class definition.
We’ll implement them

in our .cpp file.

What’s in a Header?

#pragma once

#include "vector.h"

class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

s

This is a data member of
the class. This tells us
how the class is
implemented. Internally,
we're going to store a
Vector<int> holding all the
elements. The only code
that can access or touch
this Vector 1s the RandomBag
implementation.

What’s in a Header?

#pragma once

#include "vector.h"

class RandomBag {
public:
void add(int value);
int removeRandom();

private:
Vector<int> elems;

s

class RandomBag {
public:
void add(int value);
int removeRandom();

private:

}s

Vector<int> elems;

class RandomBag {
public:
void add(int value);
int removeRandom();

int size();
bool isEmpty();

private:

}s

Vector<int> elems;

class RandomBag {
public:
void add(int value);
int removeRandom();

int size() const;
bool i1sEmpty() const;

private:

}s

Vector<int> elems;

Your Action Items

* Rest and Recharge
* You've earned it!

* Read Chapter 6 of the textbook.

 There’s a ton of goodies in there about class
design that we’ll talk about later on.

 Start Assignment 5

 Aim to complete the first two parts of the
assignment by Wednesday.

Next Time

* Dynamic Allocation

« Where does memory come from?
* Constructors and Destructors

« Taking things out and putting them away.
« Implementing the Stack

* Peering into our tools!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

