

Designing Abstractions

/* C++ */
 class Counter {
 public:
 void increment();
 int total() const;

 private:
 int value = 0;
 };

 void Counter::increment() {
 value++;
 }

 int Counter::total() const {
 return value;
 }

Python
 class Counter:
 def __init__(self):
 self.value = 0

 def increment(self):
 self.value += 1

 def total(self):
 return self.value

/* Java */
 public class Counter {
 public void increment() {
 value++;
 }

 public int total() {
 return value;
 }

 private int value = 0;
 }

// JavaScript
 class Counter {
 constructor() {
 this.value = 0;
 },

 total() {
 return this.value;
 },

 increment() {
 this.value++;
 }
 }

Designing Abstractions

ab·strac·tion
[...]

the process of considering
something independently of
its associations, attributes, or
concrete accompaniments.

Source: Google

Vector Map

Set Queue

Building a rich vocabulary of abstractions
makes it possible to model and solve a

wider class of problems.

Question One:

How do we create new abstractions to
model ideas not precisely captured by the

standard container types?

Question Two:

How do the abstractions we’ve been using
so far work, and how can we use that

knowledge to build richer abstractions?

Classes in C++

Classes
● Vector, Stack, Queue, Map,

etc. are classes in
C++.

● Classes contain
● an interface specifying

what operations can be
performed on instances
of the class.
an implementation
specifying how those
operations are to be
performed.

Interface
(What it looks like)

Interface
(What it looks like)

Classes
● Vector, Stack, Queue, Map,

etc. are classes in
C++.

● Classes contain
● an interface specifying

what operations can be
performed on instances
of the class, and

● an implementation
specifying how those
operations are to be
performed.

Interface
(What it looks like)

Implementation
(How it works)

Where
we’ve been

Where we’re
going

Creating our own Classes

Random Bags
● A random bag is a data structure similar to a

stack or queue. It supports two operations:
● add, which puts an element into the random bag,

and
● remove random, which returns and removes a

random element from the bag.
● Random bags have a number of applications:

● Simpler: Shuffling a deck of cards.
● More advanced: designing mazes. (Curious how?

Come talk to me after class!)
● Let’s go create our own custom RandomBag type!

Classes in C++
● Defining a class in C++ (typically)

requires two steps:
● Create a header file (typically suffixed

with .h) describing what operations the class
can perform and what internal state it needs.

● Create an implementation file (typically
suffixed with .cpp) that contains the
implementation of the class.

● Clients of the class can then include the
header file to use the class.

What’s in a Header?

What’s in a Header?
#pragma once

This is called an include
guard. It’s used to make
sure weird things don’t

happen if you include the
same header twice.

Curious how it works?
Come talk to me after

class!

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

This is a class
definition. We’re

creating a new class
called RandomBag. Like a
struct, this defines the

name of a new type
that we can use in our

programs.

What’s in a Header?
#pragma once

#i
nclude "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

Don’t forget to add
this semicolon! You’ll
get some Hairy Scary
Compiler Errors if you

leave it out.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

Interface
(What it looks like)

Implementation
(How it works)

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

The public interface
specifies what

functions you can call
on objects of this type.

Think things like the
Vector’s .add() function
or the string’s .find().

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

The public interface
specifies what

functions you can call
on objects of this type.

Think things like the
Vector’s .add() function
or the string’s .find().

The private implementation
contains information that

objects of the class type will
need in order to do their job
properly. This is invisible to

people using the class.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

These are member
functions of the

RandomBag class. They’re
functions you can call
on objects of the type

RandomBag.

All member functions
need to be declared in

the class definition.
We’ll implement them

in our .cpp file.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

This is a data member of
the class. This tells us

how the class is
implemented. Internally,

we’re going to store a
Vector<int> holding all the
elements. The only code
that can access or touch

this Vector is the RandomBag
implementation.

What’s in a Header?
#pragma once

#include "vector.h"

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 bool isEmpty() const;
 int size() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size();
 bool isEmpty();

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

Your Action Items
● Rest and Recharge

● You’ve earned it!
● Read Chapter 6 of the textbook.

● There’s a ton of goodies in there about class
design that we’ll talk about later on.

● Start Assignment 5
● Aim to complete the first two parts of the

assignment by Wednesday.

Next Time
● Dynamic Allocation

● Where does memory come from?
● Constructors and Destructors

● Taking things out and putting them away.
● Implementing the Stack

● Peering into our tools!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

