

Hashing
Part One

Outline for Today
● Hash Functions

● An amazingly versatile tool.
● Hash Tables

● Implementing a very fast Map.

Two Motivating Problems

Did my data make it through the network?

I love
you!

Did my data make it through the network?

I lave
you!

Did my data make it through the network?

I late
you!

Did my data make it through the network?

I hate
you!

Did my data make it through the network?

I love you!
I love you!

Did my data make it through the network?

I lave you!
I love you!

DOES NOT
COMPUTE

PLEASE RETRY

Did my data make it through the network?

I love you!
I love you!

Did my data make it through the network?

I love you!
I love you!

Did my data make it through the network?

I love you!
I lote you!

DOES NOT
COMPUTE

PLEASE RETRY

Did my data make it through the network?

I love you!
I love you!

Did my data make it through the network?

I love you!
I love you!

Did my data make it through the network?

I love you!
I love you!

Can we do this without doubling the amount
of data transmitted over the network?

How do servers store passwords?

 htiek: Gerenuk_Quokka
 neelk: Pudu_Dikdik
 lkmsf: Springbok_Kudu
 …

How do servers store passwords?

 htiek: Gerenuk_Quokka
 neelk: Pudu_Dikdik
 lkmsf: Springbok_Kudu
 …
 htiek: Gerenuk_Quokka
 neelk: Pudu_Dikdik
 lkmsf: Springbok_Kudu
 …

Hello! My name is htiek, and
my password is Gerenuk_Quokka.

Whatever that means.

How can we store passwords safely
even if the password file is stolen?

 htiek: Gerenuk_Quokka
 neelk: Pudu_Dikdik
 lkmsf: Springbok_Kudu
 …

Hello! My name is htiek, and
my password is Gerenuk_Quokka.

Whatever that means.

Way Back When…

int nameHash(string first, string last){
 /* This hashing scheme needs two prime numbers, a large prime and a small
 * prime. These numbers were chosen because their product is less than
 * 2^31 - kLargePrime - 1.
 */
 static const int kLargePrime = 16908799;
 static const int kSmallPrime = 127;

 int hashVal = 0;

 /* Iterate across all the characters in the first name, then the last
 * name, updating the hash at each step.
 */
 for (char ch: first + last) {
 /* Convert the input character to lower case. The numeric values of
 * lower-case letters are always less than 127.
 */
 ch = tolower(ch);
 hashVal = (kSmallPrime * hashVal + ch) % kLargePrime;
 }
 return hashVal;
}

This is a hash function. It’s a type of function some
smart math and CS people came up with.

Hash Function

Most hash functions return a number.
In CS106B, we’ll use the int type.

Hash Function

Different hash functions take inputs of different types.
In this example, we’ll assume it takes string inputs.

Hash Function

What makes this type of function so special?

Hash Function

Hash Function

First, if you compute the hash code of the same string
many times, you always get the same value.

"dikdik"

"dikdik"
28156

Hash Function

Second, the hash codes of different inputs are
(usually) very different from one another.

"dikdik"

"pudu"

"dikdik"

3327

28156

Hash Function

Even very similar inputs give
very different outputs!

"dikdik"

"kudu"

"pudu"

"dikdik"

3327

13985

28156

To Recap:

Equal inputs give equal outputs.

Unequal inputs (usually) give
very different outputs.

Did my data make it through the network?

Hash Function

I love you!
13724

Did my data make it through the network?

Hash Function

I lave you!
13724

DOES NOT
COMPUTE

PLEASE RETRY

Did my data make it through the network?

Hash Function

I love you!
13724

Did my data make it through the network?

Hash Function

I love you!
13724

Did my data make it through the network?

Hash Function

I lote you!
13724

DOES NOT
COMPUTE

PLEASE RETRY

Did my data make it through the network?

Hash Function

I love you!
13724

Did my data make it through the network?

Hash Function

I love you!
13724

Did my data make it through the network?

Hash Function

I love you!
13724

This is done in practice!

Look up SHA-256, the Luhn algorithm,
and CRC32 for some examples!

How do servers store passwords?

 htiek: 29157389323963039
 neelk: 54162041201524803
 lkmsf: 30965171063527336
 …

My name is htiek,
and my password is,

um, hold on…

Hash Function

 htiek: 29157389323963039
 neelk: 54162041201524803
 lkmsf: 30965171063527336
 …

This is how passwords are typically stored.
Look up salting and hashing for details!

And look up commitment schemes if you
want to see some even cooler things!

Designing Hash Functions
● Designing good hash

functions is
challenging, and it’s
beyond the scope of
what we’ll explore in
CS106B.

● Interested in things
like independent
random variables,
finite fields, and the
like? Come talk to me
after class and I’ll give
the rundown. 😃

Pr
h∈ℋ

[h(x)=s ∧ h(y)=t] = 1
m2

h(x₂x₁x₀) = T₀[x₀] ⊕ T₁[x₁] ⊕ T₂[x₂]

h(x)=∑
i=0

2

ai x
i

Working with Hash Functions

Working with Hash Functions
● Every programming language has a different

way for programmers to work with hash
functions.

● In CS106B, we’ll represent hash functions
using the type HashFunction<T>.

HashFunction<string>

string int

Working with Hash Functions
● Every programming language has a different

way for programmers to work with hash
functions.

● In CS106B, we’ll represent hash functions
using the type HashFunction<T>.

HashFunction<double>

double int

Working with Hash Functions
● Every programming language has a different

way for programmers to work with hash
functions.

● In CS106B, we’ll represent hash functions
using the type HashFunction<T>.

HashFunction<T>

T int

Working with Hash Functions
● Sometimes, you want a hash function that

outputs values in a wide range.
● For example, when storing hashes of

passwords. (Why?)
● Sometimes, you want a hash function that

outputs values in a small range.
● For example, assigning tasks to volunteers.

● Our HashFunction<T> returns a value in the
range 0, 1, 2, …, n – 1, where n is some
number you provide to the constructor.

An Application:
Map and Set

class OurSet {
public:
 OurSet();

 void add(const std::string& str);
 bool contains(const std::string& str) const;

 int size() const;
 bool isEmpty() const;

private:
 /* What goes here? */

};

In header files, we refer to
the string type as std::string.

It’s an Endearing C++
Quirk. Feel free to ask me

about this after class if
you’re curious why.

class OurSet {
public:
 OurSet();

 void add(const std::string& str);
 bool contains(const std::string& str) const;

 int size() const;
 bool isEmpty() const;

private:
 /* What goes here? */

};

class OurSet {
public:
 OurSet();

 void add(const std::string& str);
 bool contains(const std::string& str) const;

 int size() const;
 bool isEmpty() const;

private:
 /* What goes here? */

};

An Example: Clothes

For Large Values of n

Our Strategy
● Maintain a large number of small

collections called buckets (think
drawers).

● Find a rule that lets us tell where each
object should go (think knowing which
drawer is which).

● To find something, only look in the
bucket assigned to it (think looking for
socks).

Our Strategy

Maintain a large number of small
collections called buckets (think
drawers).

● Find a rule that lets us tell where each
object should go (think knowing which
drawer is which).
To find something, only look in the
bucket assigned to it (think looking for
socks).

Use a hash
function!

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurSet::contains(const string& value) const {
 int bucket = hashFn(value);
 return bucket.contains(value);
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurSet::contains(const string& value) const {
 int bucket = hashFn(value);
 return bucket.contains(value);
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurSet::contains(const string& value) const {
 int bucket = hashFn(value);
 return bucket.contains(value);
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

(bucket 3)

Buckets [0] [1] [2] [3] [4] [5]

calliope

bool OurSet::contains(const string& value) const {
 int bucket = hashFn(value);
 for (string elem: buckets[bucket]) {
 if (elem == value) return true;
 }
 return false;;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

erato

(bucket 3)

Buckets [0] [1] [2] [3] [4] [5]

calliope clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {

}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {
 int bucket = hashFn(value);
 buckets[bucket] += value;

}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {
 int bucket = hashFn(value);
 buckets[bucket] += value;

}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {
 int bucket = hashFn(value);
 buckets[bucket] += value;

}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {
 int bucket = hashFn(value);
 buckets[bucket] += value;

}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {
 int bucket = hashFn(value);
 buckets[bucket] += value;
 numElems++;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

Buckets [0] [1] [2] [3] [4] [5]

calliope

void OurSet::add(const string& value) {
 if (contains(value)) return;

 int bucket = hashFn(value);
 buckets[bucket] += value;
 numElems++;
}

clioeuterpe

erato

melpomenepolyhymnia

terpsichore thalia

urania

(bucket 2)

urania

How efficient is this?

Efficiency Concerns
● Each hash table operation

● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on
how well-spread the elements are.

Efficiency Concerns
● Each hash table operation

● chooses a bucket and jumps there, then
● potentially scans everything in the bucket.

● Claim: The efficiency of our hash table depends on
how well-spread the elements are.

...

Efficiency Concerns
● For a hash table to be fast, we need a hash

function that spreads things around nicely.
● We’ll assume our HashFunction<T> type

distributes elements more or less randomly.
● Writing good hash functions – or quantifying

how good they are – is the domain of courses
like CS161, CS166, and CS265. Come talk to
me after class if you’re curious!

Analyzing our Efficiency
● Let’s suppose we have a “strong” hash

function that distributes elements fairly evenly.
● Imagine we have b buckets and n elements in

our table.
● On average, how many elements will be in a

bucket?
Answer: n / b

● The expected cost of an insertion, deletion, or
lookup is therefore

O(1 + n / b).

Load Factors
● The load factor of a hash table with n

elements and b buckets is denoted α and given
by the expression

α = n / b.
● The expected cost of a lookup in a hash table

is O(1 + n / b) = O(1 + α).
● If α gets too big, the hash table will be too slow.
● If α gets too low, the hash table will waste too

much space.
● How do we balance things?

Remember When?
● Think back to how we

implemented the Stack.
● Initially, we had a fixed

number of slots.
● Once we ran out of

space, we doubled the
number of slots and
transferred things over.

● Can we do that here?
● Idea: Double the table

size whenever n / b ≥ 2.

4

3

allocated
size

logical
size

element
array

137 42 2718 ??

[0] [1] [2] [3] [4] [5]

송강호

최우식

박소담

이정은

봉준호

조여정

hashFn

I only produce hash
codes in this range!

[0] [1] [2] [3] [4] [5]

송강호

최우식

박소담

이정은

봉준호

조여정

hashFn newHash

No worries! I’ll
cover the whole

range.

[0] [1] [2] [3] [4] [5]

송강호 최우식 박소담이정은 봉준호조여정
hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담이정은 봉준호조여정
hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담이정은 봉준호

조여정

hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담

이정은

봉준호

조여정

hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식

박소담

이정은

봉준호

조여정

hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식

박소담

이정은 봉준호조여정

hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담

이정은 봉준호조여정

hashFn newHash

I’ll tell each of you
where you need to

go in this new table!

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담

이정은 봉준호조여정

hashFn newHash

Thanks! My work
here is done!

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담

이정은 봉준호조여정

newHash

[0] [1] [2] [3] [4] [5]

송강호

최우식 박소담

이정은 봉준호조여정

hashFn

Rehashing
● To perform a rehash, do the following:

● Get a new list of buckets, twice as big as before.
● Get a new hash function that distributes

elements across the wider range.
● Redistribute the elements from the old buckets

into the new ones, using the new hash function.
● Use the new buckets and hash functions going

forward.
● Time required is O(n). However, this

happens so rarely that the extra work
averages out to O(1) per insert.

The Final Scorecard
● Assuming we cap the load factor α at

some constant (say, 2), then 1 + α = O(1).
● That is, 1 + α doesn’t grow as a function of n,

the number of elements in the hash table.
● The expected cost of a lookup is O(1).
● The expected cost of an insertion is O(1).

● (It’s actually expected amortized O(1), since
we do some work to copy things over, but
only very infrequently.)

● This is about as good as it gets!

Your Action Items
● Work on Assignment 6

● If you’re following our proposed timetable,
you’ll be wrapping up your HeapPQueue
implementation by Wednesday.

● Need help or support? Come talk to us at
LaIR, in office hours, or over EdStem!

Next Time
● Guest Lecture by Katie Creel

● Our resident ethicist!
● Ethics of Ranking

● What happens if you reduce someone to a
single number?

● Ethics of Priority Queues
● What happens when you rank people from

highest to lowest priority?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

