

Binary Search Trees
Part One

Outline for Today
● Why Trees?

● What’s so special about a tree shape?
● Binary Search Trees

● A simple and elegant way to store data.
● Tree Searches

● On knowing where to look.
● Printing Trees

● A delightful recursive algorithm.
● Adding to Trees

● Expanding things outward.

On Being Near the Front

dikdik gerenuk impala kudu pudu quokka springbok

What is the average cost of searching
for an element in an n-item linked list?

Answer using big-O notation.

Formulate a hypothesis! 😃

dikdik gerenuk impala kudu pudu quokka springbok

What is the average cost of searching
for an element in an n-item linked list?

Answer using big-O notation.

Chat with your neighbors!

dikdik gerenuk impala kudu pudu quokka springbok

Answer: O(n).

Intuition: Most elements are far from the front.

Can you chain a bunch of objects together
so that most of them are near the front?

An Interactive Analogy

Take a deep breath.

And exhale.

Feel nicely oxygenated?

Your lungs
have about
500 million
alveoli…

… yet the
path to each
one is short.

Key Idea: The distance from the top of a
tree to each node in the tree is small.

Harnessing this Insight

106

103

51

52

41

110

108

107
109

166

154

143
161

106

103

51

5241

110

108

107 109

166

154

143

161

106

103

51

52

41

110

108

107

109

166

154

143

161

There are
13 nodes in
this tree...

… yet the
path to each
one is short.

106

103

51

5241

110

108

107 109

166

154

143

161

106

103

51

52

41

110

108

107

109

166

154

143

161

How do we know
to go this way
to get 109?

106

103

51

5241

110

108

107 109

166

154

143

161

106

103

51

52

41

110

108

107

109

166

154

143

161

How do we know
to go this way
to get 108?

Goal: Store elements in a tree structure
where there’s an easy way to find them.

106

103

51

52

41

110

108

107
109

166

154

143
161

106

103

51

52

41

110

108

107
109

166

154

143
161

106

103

51

52

41

110

108

107
109

166

154

143
161

106

103

51

52

41

110

108

107
109

166

154

143
161

Elements less than
106 go here...

… and elements greater
than 106 go here.

106

103
51

52

110

108

107

109

166

154
143

161

41

Elements less than
106 go here...

… and elements greater
than 106 go here.

106

103
51

52

110

108

107

109

166

154
143

161

41

106

51

52

110

108

107

109

166

154
143

161

41

103

106

103
51

52

110

108

107

109

166

154
143

161

41

106

103

51

52

110

108

107

109

166

154
143

161

41

106

51

52

110

108

107

109

166

154
143

161

41

103

< 103 > 103

106

51

110

108

107

109

166

154
143

161

103

52

41

< 103 > 103

106

51

110

108

107

109

166

154
143

161

103

52

41

106

51

110

108

107

109

166

154
143

161

103

52

41

106

51

110

108

107

109

166

154
143

161

103

52

41

106

51

110

108

107

109

166

154
143

161

103

52

41

106

51

108

107

109

166

154
143

161

103 110

52

41

< 110 > 110

106

51
108

107

109

166

154

143

161

103 110

52

41

< 110 > 110

106

51
108

107

109

166

154

143

161

103 110

52

41

106

51
108

107

109

166

154

143

161

103 110

52

41

106

51

52
108

107

109

166

154

143

161

103 110

41

106

51

108

107

109

166

154

143

161

103 110

52

41

106

108

107

109

166

154

143

161

103 110

51

52

41

106

108

107

109

166

154

143

161

103 110

51

5241

106

108

107

109

166

154

143

161

103 110

51

5241

106

108

107

109

166

154

143

161

103 110

51

5241

106

108

107

109

166

154

143

161

103 110

51

5241

106

103

51

5241

110

108

107 109

166

154

143 161

There are
13 nodes in
this tree...

… yet the
path to each
one is short.

106

103

51

5241

110

108

107 109

166

154

143 161

106

103

51

5241

110

108

107 109

166

154

143 161
How can we
check if 108
is in this
tree?

x

<x >x

106

103

51

5241

110

108

107 109

166

154

143 161
How can we
check if 108
is in this
tree?

106

x

<x >x

106

103

51

5241

How can we
check if 108
is in this
tree?

110

108

107 109

166

154

143 161

106

x

<x >x

106

103

51

5241

How can we
check if 108
is in this
tree?

110

108

107 109

166

154

143 161

x

<x >x

106

103

51

5241

How can we
check if 108
is in this
tree?

110

108

107 109

166

154

143 161

110

x

<x >x

106

103

51

5241

How can we
check if 108
is in this
tree?

108

107 109

166

154

143 161

110110

x

<x >x

106

103

51

5241

How can we
check if 108
is in this
tree?

166

154

143 161

110

108

107 109

x

<x >x

106

103

51

5241

How can we
check if 108
is in this
tree?

166

154

143 161

110

107 109

108108

x

<x >x

106

103

51

5241

110

108

107 109

166

154

143 161How can we
check if 83 is
in this tree?

x

<x >x

106

103

51

5241

110

108

107 109

166

154

143 161How can we
check if 83 is
in this tree?

106

x

<x >x

110

108

107 109

166

154

143 161

106

103

51

5241

106

How can we
check if 83 is
in this tree?

x

<x >x

106

110

108

107 109

166

154

143 161

103

51

5241

How can we
check if 83 is
in this tree?

x

<x >x

106

110

108

107 109

166

154

143 161

103

51

5241

103

How can we
check if 83 is
in this tree?

x

<x >x

103

106

110

108

107 109

166

154

143 161

51

5241

How can we
check if 83 is
in this tree?

x

<x >x

103

106

110

108

107 109

166

154

143 161

51

5241

51

How can we
check if 83 is
in this tree?

x

<x >x

41

103

106

110

108

107 109

166

154

143 161

51

52

51

How can we
check if 83 is
in this tree?

x

<x >x

51

41

103

106

110

108

107 109

166

154

143 161

52

How can we
check if 83 is
in this tree?

x

<x >x

51

41

103

106

110

108

107 109

166

154

143 161

5252

How can we
check if 83 is
in this tree?

x

<x >x

52

51

41

103

106

110

108

107 109

166

154

143 161How can we
check if 83 is
in this tree?

x

<x >x

5

Binary Search Trees
● The data structure we have

just seen is called a binary
search tree (or BST).

● The tree consists of a
number of nodes, each of
which stores a value and
has zero, one, or two
children.

● All values in a node’s left
subtree are smaller than
the node’s value, and all
values in a node’s right
subtree are greater than
the node’s value.

-2

-1

1

2

3

6

3

4

7

9

0

6

4

8

Which of these are BSTs?
Which are binary heaps?

Formulate a
hypothesis! 😃

A 4
2 6

1 3 5 7

B 1
2 4

3 7 5 6

C 1
7

8
9

D 3
4 2

5 1

E

3

Which of these are BSTs?
Which are binary heaps?

Chat with your
neighbors! 😃

A B

C D

E

4
2 6

1 3 5 7

1
2 4

3 7 5 6

1
7

8
9

3
4 2

5 1

3

A B

C D

E

4
2 6

1 3 5 7

1
2 4

3 7 5 6

1
7

8
9

3
4 2

5 1

3

BST ✓
Heap ×

BST ×
Heap ✓

BST ✓
Heap ×

BST ×
Heap ×

BST ✓
Heap ✓

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

struct Node {
 Type value;
 Node* left; // Smaller values
 Node* right; // Bigger values
};

Binary Search Tree Nodes

Kinda like a linked
list, but with two
pointers instead of

just one!

Searching Trees

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

If you’re looking for
something in an

empty BST, it’s not
there! Sorry.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita

Good exercise:
Rewrite this function iteratively!

Walking Trees

Print all the values in a BST,
in sorted order.

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Print all values
that come before
Douglas Fir...

…then
Douglas Fir… … then all values

that come after
Douglas Fir.

x

<x >x

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita

Inorder Traversals
● The particular recursive pattern we just

saw is called an inorder traversal of a
binary tree.

● Specifically:
● Recursively visit all the nodes in the left

subtree.
● Visit the node itself.
● Recursively visit all the nodes in the right

subtree.

What will happen if we
swap these two lines?

Formulate a hypothesis! 😃

What will happen if we
swap these two lines?

Discuss with your
neighbor! 😃

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita

Challenge problem:
Rewrite this function iteratively!

Adding to Trees

Thanks,
WikiHow!

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147
147

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

into this tree.

147
147

106

103

51

5241

110

108

107 109

166

154

143 161

147

106

103

51

5241

110

108

107 109

166

154

143 161
Where do we add

into this tree?

221
147

Formulate a
hypothesis!

106

103

51

5241

110

108

107 109

166

154

143 161
Where do we add

into this tree?

221
147

Discuss
with your

neighbor! 😃

106

103

51

5241

110

108

107 109

166

154

143 161
Where do we add

into this tree?

221
147

221

Let's Code it Up!

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

A Binary Search Tree Is Either…
an empty tree,
represented by
nullptr, or…

x

<x >x

… a single node,
whose left subtree

is a BST of
smaller values …

… and whose right
subtree is a BST
of larger values.

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita

Your Action Items
● Read Chapter 16.1 – 16.2.

● There’s a bunch of BST topics in there, along
with a different intuition for how they work.

● Work on Assignment 8.
● Slow and steady progress is the name of the

game here!

Next Time
● Tree Heights

● Many trees can hold the same keys. How do
we compare them?

● Freeing Trees
● Reclaiming memory in a tree.

● Range Searches
● Quickly finding all values in a range.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109

