
  

Binary Search Trees
Part One



  

Outline for Today
● Why Trees?

● What’s so special about a tree shape?
● Binary Search Trees

● A simple and elegant way to store data.
● Tree Searches

● On knowing where to look.
● Printing Trees

● A delightful recursive algorithm.
● Adding to Trees

● Expanding things outward.



  

On Being Near the Front



  

dikdik gerenuk impala kudu pudu quokka springbok

What is the average cost of searching
for an element in an n-item linked list?

Answer using big-O notation.

Formulate a hypothesis! 😃



  

dikdik gerenuk impala kudu pudu quokka springbok

What is the average cost of searching
for an element in an n-item linked list?

Answer using big-O notation.

Chat with your neighbors! 



  

dikdik gerenuk impala kudu pudu quokka springbok

Answer: O(n).

Intuition: Most elements are far from the front.



  

Can you chain a bunch of objects together 
so that most of them are near the front?



  

An Interactive Analogy



  

Take a deep breath.



  

And exhale.



  

Feel nicely oxygenated?



  



  

Your lungs 
have about 
500 million 
alveoli…

… yet the 
path to each 
one is short.



  

Key Idea: The distance from the top of a 
tree to each node in the tree is small.



  

Harnessing this Insight
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There are 
13 nodes in 
this tree...

… yet the 
path to each 
one is short.
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How do we know 
to go this way 
to get 109?
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How do we know 
to go this way 
to get 108?



  

Goal: Store elements in a tree structure 
where there’s an easy way to find them.



  

106

103

51

52

41

110

108

107
109

166

154

143
161



  

106

103

51

52

41

110

108

107
109

166

154

143
161



  

106

103

51

52

41

110

108

107
109

166

154

143
161



  

106

103

51

52

41

110

108

107
109

166

154

143
161

Elements less than 
106 go here...

… and elements greater 
than 106 go here.
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… yet the 
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is in this 
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5

Binary Search Trees
● The data structure we have 

just seen is called a binary 
search tree (or BST).

● The tree consists of a 
number of nodes, each of 
which stores a value and 
has zero, one, or two 
children.

● All values in a node’s left 
subtree are smaller than 
the node’s value, and all 
values in a node’s right 
subtree are greater than 
the node’s value.
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Which of these are BSTs?
Which are binary heaps?

 

Formulate a
hypothesis! 😃

A 4
2 6

1 3 5 7

B 1
2 4

3 7 5 6

C 1
7

8
9

D 3
4 2

5 1

E

3



  

Which of these are BSTs?
Which are binary heaps?

 

Chat with your
neighbors! 😃

A B

C D

E

4
2 6

1 3 5 7

1
2 4

3 7 5 6

1
7

8
9

3
4 2

5 1

3



  

A B

C D

E

4
2 6

1 3 5 7

1
2 4

3 7 5 6

1
7

8
9

3
4 2

5 1

3

BST ✓
Heap ×

BST ×
Heap ✓

BST ✓
Heap ×

BST ×
Heap ×

BST ✓
Heap ✓



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

struct Node {                     
    Type value;                   
    Node* left;  // Smaller values
    Node* right; // Bigger values 
};                                

Binary Search Tree Nodes

Kinda like a linked 
list, but with two 
pointers instead of 

just one!



  

Searching Trees



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

If you’re looking for 
something in an 

empty BST, it’s not 
there! Sorry.



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita



  

Good exercise:
Rewrite this function iteratively!



  

Walking Trees



  

Print all the values in a BST,
in sorted order.



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

Print all values 
that come before 
Douglas Fir...

…then 
Douglas Fir… … then all values 

that come after 
Douglas Fir.

x

<x >x

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita



  

Inorder Traversals
● The particular recursive pattern we just 

saw is called an inorder traversal of a 
binary tree.

● Specifically:
● Recursively visit all the nodes in the left 

subtree.
● Visit the node itself.
● Recursively visit all the nodes in the right 

subtree.



  

What will happen if we
swap these two lines?

Formulate a hypothesis! 😃



  

What will happen if we
swap these two lines?

Discuss with your
neighbor! 😃



  

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita



  

Challenge problem:
Rewrite this function iteratively!



  

Adding to Trees

Thanks, 
WikiHow!



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147
147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Let’s insert

 

into this tree.

147
147



  

106

103

51

5241

110

108

107 109

166

154

143 161

147



  

106

103

51

5241

110

108

107 109

166

154

143 161
Where do we add

 

into this tree?

221
147

Formulate a
hypothesis! 
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Let's Code it Up!



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x



  

A Binary Search Tree Is Either…
an empty tree, 
represented by 
nullptr, or…

x

<x >x

… a single node,
whose left subtree 

is a BST of 
smaller values …

… and whose right 
subtree is a BST 
of larger values.



  

Douglas
Fir

Bristlecone
Pine

Bay
Laurel

Coast
Redwood

Giant
Sequoia

Jeffrey
Pine

Manzanita



  

Your Action Items
● Read Chapter 16.1 – 16.2.

● There’s a bunch of BST topics in there, along 
with a different intuition for how they work.

● Work on Assignment 8.
● Slow and steady progress is the name of the 

game here!



  

Next Time
● Tree Heights

● Many trees can hold the same keys. How do 
we compare them?

● Freeing Trees
● Reclaiming memory in a tree.

● Range Searches
● Quickly finding all values in a range.
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