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A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes 
connected by edges.

Edges



  

Some graphs are directed.



  

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.



  

How can we represent graphs in C++?



  

Representing Graphs

Node Adjacent To            
Vector<Node>      Node

Map<Node, Vector<Node>>   We can represent a graph 
as a map from nodes to 
the list of nodes each 
node is connected to.



  

Representing Graphs
● The approach we just saw is called an 

adjacency list in comes in a number of 
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

Vector<Vector<int>>

● The core idea is that we have some kind 
of mapping associating each node with 
its outgoing edges.



  

Representing Graphs

The approach we just saw is called an 
adjacency list in comes in a number of 
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

Vector<Vector<int>>

The core idea is that we have some kind 
of mapping associating each node with 
its outgoing edges.

Question to ponder: 
where have you seen this 

before?



  

Other Graph Representations

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

This representation is called an 
adjacency matrix.

 

For those of you in Math 51: if 
A is an adjacency matrix for a 

graph G, what is the 
significance of the matrix A2?



  

Other Representations
PIERS

PIES PIER PIRS

PISPIE PIR

PIISPE

I

PES

Many problems work 
on an implicit graph.



  

You’ll find graphs just
about everywhere you look.

 

They’re an extremely versatile and 
powerful abstraction to be aware of.



  

Going forward, unless stated otherwise,
assume we’re using an adjacency list.

Node Adjacent To



  

Traversing Graphs



  

Iterating over a Graph
● In a singly-linked list, there’s pretty much one 

way to iterate over the list: start at the front 
and go forward!

● In a binary search tree, there are many 
traversal strategies:
● An inorder traversal that produces all the 

elements in sorted order.
● A postorder traversal is used to delete all 

the nodes in the BST.
● There are many ways to iterate over a graph, 

each of which have different properties.



  

One Search Strategy
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Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.
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A

I

E
0

B
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12 2

2

C

G H

F 3

3 4

Core idea: Find 
everything one 
hop away from 
the start, then 
two hops away, 
then three hops 

away, etc.



  

Implementing this Idea



  
Visit nodes in ascending order of 
distance from the start node E.

Load newly-discovered
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Breadth-First Search
● The Queue-based search strategy we just 

saw is called breadth-first search (or 
just BFS for short).

● In pseudocode:
bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}



  

Depth-First Search



  

Depth-First Search

Rule: Keep trying new 
experiences! Always go 

somewhere new if you can, 
and only back up if there’s 

nothing new to see.
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How can we implement this?



  

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}

Breadth-First Search
Queue: X Q V A L

C

I’ve just been
discovered! Pay
attention to me!

These nodes got here 
first, so they get 
processed first.



  

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}

Depth-First Search
Stack: X Q V A L

C

I’ve just been
discovered! Pay
attention to me!

Oooh! A shiny new 
node! Who cares 
about these ones?



  

For Comparison

bfs-from(node v) {
    make a queue of nodes, initially seeded with v.
     

    while the queue isn't empty:
        dequeue a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been enqueued:
                enqueue that node.
}



  

For Comparison

dfs-from(node v) {
    make a stack of nodes, initially seeded with v.
     

    while the stack isn't empty:
        pop a node curr.
        process the node curr.
     

        for each node adjacent to curr:
            if that node has never been pushed:
                push that node.
}



  

When you see a stack-based algorithm,
think recursion!

dfs-from(node v) {
    if this is first time we've called dfs-from(v):
        process node v
        for each node adjacent to v:
            call dfs-from on that node 
}



  

BFS and DFS
● Running BFS or DFS from a node in a 

graph will visit the same set of nodes, 
but probably in a different order.

● BFS will visit nodes in increasing order 
of distance.

● DFS does visit nodes in some interesting 
order, but not order of distance.
● Take CS161 for more details!



  

A Whimsical Application



  

Mazes as Graphs



  

Creating a Maze with DFS
● Create a grid graph of the appropriate size.

 

  

● Starting at any node, run a depth-first search, 
choosing neighbor orderings at random.

● The resulting DFS tree is a maze with one solution.



  

Next Time
● Minimum Spanning Trees

● How to wire an electrical grid cheaply.
● Applications of MSTs

● Data clustering, computational biology, and 
more!
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