

Graphs

A Social Network

Chemical Bonds

http://4.bp.blogspot.com/-xCtBJ8lKHqA/Tjm0BONWBRI/AAAAAAAAAK4/-mHrbAUOHHg/s1600/Ethanol2.gif

http://strangemaps.files.wordpress.com/2007/02/fullinterstatemap-web.jpg

http://www.toothpastefordinner.com/

A graph is a mathematical structure
for representing relationships.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Nodes

A graph is a mathematical structure
for representing relationships.

A graph consists of a set of nodes
connected by edges.

Edges

Some graphs are directed.

CAT SAT RAT

RANMAN

MAT

CAN

Some graphs are undirected.

How can we represent graphs in C++?

Representing Graphs

Node Adjacent To
Vector<Node> Node

Map<Node, Vector<Node>> We can represent a graph
as a map from nodes to
the list of nodes each
node is connected to.

Representing Graphs
● The approach we just saw is called an

adjacency list in comes in a number of
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

Vector<Vector<int>>

● The core idea is that we have some kind
of mapping associating each node with
its outgoing edges.

Representing Graphs

The approach we just saw is called an
adjacency list in comes in a number of
different forms:

Map<string, Vector<string>>

Map<string, Set<string>>

Vector<Vector<int>>

The core idea is that we have some kind
of mapping associating each node with
its outgoing edges.

Question to ponder:
where have you seen this

before?

Other Graph Representations

0 1 1 0 0 0

1 0 1 1 1 0

1 1 0 1 0 1

0 1 1 0 1 1

0 1 0 1 0 1

0 0 1 1 1 0

This representation is called an
adjacency matrix.

For those of you in Math 51: if
A is an adjacency matrix for a

graph G, what is the
significance of the matrix A2?

Other Representations
PIERS

PIES PIER PIRS

PISPIE PIR

PIISPE

I

PES

Many problems work
on an implicit graph.

You’ll find graphs just
about everywhere you look.

They’re an extremely versatile and
powerful abstraction to be aware of.

Going forward, unless stated otherwise,
assume we’re using an adjacency list.

Node Adjacent To

Traversing Graphs

Iterating over a Graph
● In a singly-linked list, there’s pretty much one

way to iterate over the list: start at the front
and go forward!

● In a binary search tree, there are many
traversal strategies:
● An inorder traversal that produces all the

elements in sorted order.
● A postorder traversal is used to delete all

the nodes in the BST.
● There are many ways to iterate over a graph,

each of which have different properties.

One Search Strategy

A B

D E

C

H

F

G I

A B

D E

C

H

F

G I

A B

D

C

H

F

G I

E

A B

D

C

H

F

G I

E
0

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A C

H

F

G I

E
0

1

1

B

D

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A C

H

F

G I

E
0

B

D1

1

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

H

F

I

E
0

B

D1

1

C

GCore idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

H

F

I

E
0

B

D1

12 2

2

C

GCore idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

I

E
0

B

D1

12 2

2

C

G H

F

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

I

E
0

B

D1

12 2

2

C

G H

F 3

3

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

A

I

E
0

B

D1

12 2

2

C

G H

F 3

3 4

Core idea: Find
everything one
hop away from
the start, then
two hops away,
then three hops

away, etc.

Implementing this Idea

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D E

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue: E

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A B

D

C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

D B

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

B

D

C

G H

F
0

Queue:

E

B

D

D B

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

D B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A C

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

C

G H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

A G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

G

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

H

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

C

C

C

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

F

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

H F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G I

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4

Visit nodes in ascending order of
distance from the start node E.

Load newly-discovered
nodes into a queue.

A

G

A

I

E

H

F
0

Queue:

E

B

D

B

D1

1

CC

G

2 2

2

H

F

I

3

3 4

Breadth-First Search
● The Queue-based search strategy we just

saw is called breadth-first search (or
just BFS for short).

● In pseudocode:
bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

Depth-First Search

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

Depth-First Search

Rule: Keep trying new
experiences! Always go

somewhere new if you can,
and only back up if there’s

nothing new to see.

How can we implement this?

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

Breadth-First Search
Queue: X Q V A L

C

I’ve just been
discovered! Pay
attention to me!

These nodes got here
first, so they get
processed first.

dfs-from(node v) {
 make a stack of nodes, initially seeded with v.

 while the stack isn't empty:
 pop a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been pushed:
 push that node.
}

Depth-First Search
Stack: X Q V A L

C

I’ve just been
discovered! Pay
attention to me!

Oooh! A shiny new
node! Who cares
about these ones?

For Comparison

bfs-from(node v) {
 make a queue of nodes, initially seeded with v.

 while the queue isn't empty:
 dequeue a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been enqueued:
 enqueue that node.
}

For Comparison

dfs-from(node v) {
 make a stack of nodes, initially seeded with v.

 while the stack isn't empty:
 pop a node curr.
 process the node curr.

 for each node adjacent to curr:
 if that node has never been pushed:
 push that node.
}

When you see a stack-based algorithm,
think recursion!

dfs-from(node v) {
 if this is first time we've called dfs-from(v):
 process node v
 for each node adjacent to v:
 call dfs-from on that node
}

BFS and DFS
● Running BFS or DFS from a node in a

graph will visit the same set of nodes,
but probably in a different order.

● BFS will visit nodes in increasing order
of distance.

● DFS does visit nodes in some interesting
order, but not order of distance.
● Take CS161 for more details!

A Whimsical Application

Mazes as Graphs

Creating a Maze with DFS
● Create a grid graph of the appropriate size.

● Starting at any node, run a depth-first search,
choosing neighbor orderings at random.

● The resulting DFS tree is a maze with one solution.

Next Time
● Minimum Spanning Trees

● How to wire an electrical grid cheaply.
● Applications of MSTs

● Data clustering, computational biology, and
more!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169

