

Where to Go from Here

Taking Stock: Where Are We?

Goals for this Course
● Learn how to model and solve

complex problems with computers.
● To that end:

● Explore common abstractions for
representing problems.

● Harness recursion and understand how to
think about problems recursively.

● Quantitatively analyze different approaches
for solving problems.

What We’ve Covered

Strings
Recursion

Stacks
Queues
Vectors
Maps
Sets

Lexicons

What We’ve Covered

Recursive Graphics
Recursive Enumeration
Recursive Backtracking

Big-O Notation
Sorting Algorithms

Class Design
Pointers and Memory

Constructors and Destructors

What We’ve Covered

Dynamic Arrays
Chained Hashing
Linear Probing

Robin Hood Hashing
Linked Lists

Binary Search Trees
Huffman Coding

Graphs

You didn’t just learn a list of concepts.

You learned to make those concepts shine.

 Assignment 1: Strings, Streams, and Recursion

 Assignment 2: Container Types

 Assignment 3: Recursive Problem-Solving

 Assignment 4: Recursive Backtracking

 Assignment 5: Big-O, Sorting

 Assignment 6: Classes, Dynamic Arrays

 Assignment 7: Hash Functions, Class Design

 Assignment 8: Linked Structures

 Assignment 9: Trees and Tree Searches

Computer science is more
than just programming.

These skills will make you better
at whatever you choose to do.

So what comes next?

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS111
Operating Systems

Principles

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS111
Operating Systems

Principles

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s

CS106B
Programming
Abstractions

CS111
Operating Systems

Principles

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s CS107
Computer

Organization and
Systems

CS107
Computer Organization and Systems

How does the computer work, at its most
basic levels?

How do those low-level details lead
to larger-scale phenomena?

What levels of abstraction lie beneath
basic C++ concepts?

Prerequisite: CS106B

CS107E
Computer Systems from the Ground Up

How can we use software to control
hardware devices?

How do displays, keyboards, etc. get data
into or out of the computer?

What’s it like to build a
computer system from scratch?

Prerequisite: CS106B

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS111
Operating Systems

Principles

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s

CS106B
Programming
Abstractions

CS111
Operating Systems

Principles

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s CS107
Computer

Organization and
Systems

CS103
Mathematical

Foundations of
Computing

CS103
Mathematical Foundations of Computing

What mathematical tools can we use to
analyze programs, processes, and graphs?

Why are some problems harder to solve
than others?

Are there problems that cannot be solved by
computers, and how would we know?

Corequisite: CS106B

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS111
Operating Systems

Principles

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s

CS106B
Programming
Abstractions

CS111
Operating Systems

Principles

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s CS107
Computer

Organization and
Systems

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS109
Probability for Computer Scientists

Why is a randomly-built binary search
tree probably balanced?

How do we use computers to
make sense of large data sets?

What is machine learning, and how do
machines learn?

Prerequisites: CS106B, Math 51, “CS103”

CS106B
Programming
Abstractions

CS107
Computer

Organization and
Systems

CS111
Operating Systems

Principles

CS103
Mathematical

Foundations of
Computing

CS109
Intro to Probability

for Computer
Scientists

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s

CS106B
Programming
Abstractions

CS111
Operating Systems

Principles

CS161
Design and Analysis

of Algorithms

The CS Core
Theo ry

Sy
st
em

s CS109
Intro to Probability

for Computer
Scientists

CS107
Computer

Organization and
Systems

CS103
Mathematical

Foundations of
Computing

Next Steps in CS
● It’s reasonable to take one of CS107,

CS103, or CS109 as a next CS class. You’ll
put in a good amount of work and learn a
ton in the process.

● Do not feel pressured to do everything
at once. Taking two of these classes
concurrently is a significant amount of
work, and it isn’t expected of you.

● Want some more guidance? Come talk to
me after class!

Other CS Classes to Consider
● You now have the prerequisites for each of these courses:

● CS41: Python Programming
● CS106E: Survey of Computer Science
● CS106L: C++ Programming
● CS147: Human-Computer Interaction
● CS151: Logic Programming
● CS182: Ethics, Pub. Policy, and Tech. Change
● CS193X: Web Programming
● CS274: Computational Biology
● CS300: Survey of CS Research
● CS522: AI in Healthcare
● CS547: Survey of Human-Computer Interaction

● Come talk to me after class if you’d like to learn more!

The CS Major

https://cs.stanford.edu/degrees/undergrad/

https://cs.stanford.edu/degrees/undergrad/

CS
Core

Systems

Theory

Artificial
Intelligence

Systems

Theory

Biocomputation

Computer
Engineering

GraphicsHuman-Computer
Interaction

Information

Thinking about CS?
● Good reasons to think about doing CS:

● I like the courses and what I’m doing in them.
● I like the people I’m working with.
● I like the impact of what I’m doing – or I want to steer how

technology is developed and used in the world.
● Bad reasons to think about not doing CS:

● I really enjoy this, but other people are better coders than me.
● I’m learning a lot, but other people have been doing this longer

than me and there’s no way for me to catch up.
● I like the classes I’m taking, but the field is so big and I have no

idea which area to focus in.
● I don’t know what I’m going to be doing many years down the

line, and I don’t want to be pigeonholed into just a tech person.

The CS Coterm
https://csmajor.stanford.edu/academicz/masters/coterm-faq

https://csmajor.stanford.edu/academicz/masters/coterm-faq

What’s the Coterm?
● It’s a coterminal master’s degree.
● Work concurrently on your BS (in any subject) and

your MS (in computer science).
● Designed with two populations in mind:

● Give existing CS majors access to more depth and
breadth of knowledge.

● Give non-CS majors a chance to explore CS and emerge
with a thorough command of the material.

● All Stanford undergrads are welcome to apply.
This is intentional, and the door is open to all
comers!

The CS Minor

https://cs.stanford.edu/degrees/ug/Minor.shtml

https://cs.stanford.edu/degrees/ug/Minor.shtml

What’s the CS Minor?
● Five classes in CS: take CS103, CS107,

CS109, plus two other depth classes.
● Nice option if you want to keep exploring

CS while pursuing another major.
● For more information, visit

https://cs.stanford.edu/degrees/ug/Minor.shtml

https://cs.stanford.edu/degrees/ug/Minor.shtml

Outside Stanford

Learning More
● Some cool directions to explore:

● Specific technologies. You already know
how to program. You just need to learn new
technologies, frameworks, etc.

● Algorithms. Learn more about what
problems we know how to solve.

● Software engineering. Crafting big
software systems is an art.

● Machine learning. If no new ML
discoveries were made in the next ten years,
we’d still see a huge impact.

How to Explore Them
● Online courses through Coursera, Udacity, edX, etc.

are fantastic ways to learn new concepts.
● Andrew Ng’s machine learning course, Fei Fei Li’s computer

vision course, Tim Roughgarden’s algorithms course, and
Jennifer Widom’s databases courses are legendary.

● Learning by doing is the best way to pick up new
languages and frameworks.
● Find a good tutorial (ask around), plan to make a bunch of

mistakes, and have fun!
● Know where to ask for help.

● Online resources like Stack Overflow can provide help (if
you know how to ask questions well; that can take some
practice!)

Some Words of Thanks

Who's Here Today?
● Aero/Astro
● Afro-American

Studies
● Anthropology
● Art History
● Biochemistry
● Bioengineering
● Biology
● Biomedical

Informatics
● Business
● Chemistry
● Civil/Env. Engr
● Classics
● Creative Writing

● Intl. Relations
● Latin Amer. Studies
● Law
● Mech. Engineering
● MS&E
● Neuroscience
● Physics
● Psychology
● Public Policy
● Statistics
● TAPS
● Undeclared!
● Urban Studies

● Comparative Lit
● CSRE
● Computer Science
● CME
● Earth Systems
● Economics
● Education
● Electrical

Engineering
● Energy Resources
● Epidemiology
● Human Biology
● Immunology
● International Policy

My Email Address

htiek@cs.stanford.edu

mailto:htiek@cs.stanford.edu

You now have a wide array of tools you can
use to solve a huge number of problems.

You have the skills to compare
and contrast those solutions.

You have expressive mental models
for teasing apart those problems.

My Questions to You:

What problems will you choose to solve?
Why do those problems matter to you?
And how are you going to solve them?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

