Using Nested ADTs:
Breadth-First Search

Preparing you for Assignment 2!

How can we use
abstractions (ADTs) to

Today’s
queStiOn solve problems?

Nested Data Structures

Nested Data Structures

e Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

Nested Data Structures

e Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

e You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

An example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo.

An example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo.

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

An example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

e Data Structure Declaration
0 Map<string, Vector<string>>

An example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

e Data Structure Declaration
0 Map<string, Vector<string>>

W __ Quick lookup by animal name

An example

e Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

e Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

e Data Structure Declaration
© Map<string, Vector<string>> Store multiple, ordered feeding times

N— per animal
D

Nested Data Structures Example

map
keys values

"hansa" > {"12:00","3:00","9:00"}

"kandula" {"8:00","1:00"}

" lumpy" {"11:00"}

"surus" {"5:00","3:00","9:00","2:00"}

Wonderful diagram and animal naming borrowed from Sonja Johncon-Yu

Nested Data Structures Example

map
keys values
"hansa" > {"12:00","3:00","9:00"}
"kandula" {"8:00","1:00"}
"]_umpy" {"11:00"}
"surus" {"5:00","3:00","9:00","2:00"}

/‘/ow do we uce moa’/@ the internal
values of thic ma,b?

Nested Data Structures Example

feedingTimes map

Goal: We want to add a second feeding time of 4:00 keys values

for "lumpy". "hansa"
"kandula" [——

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", }
" lumpy "

" Surus " {115:0011,113:0011,119:0011,
- "2:00"}

Nested Data Structures Example

feedingTimes map

keys values

{"12:00","3:00","9:00"}

Goal: We want to add a second feeding time of 4:00
for "lumpy". "hansa" S

{"8:00","1:00"}
"kandula" | ——

Which of the following three snippets of code will
correctly update the state of the map? "lumpy" —

"surus" -

{"11:00", }

{"5:00","3:00","9:00",
"2:00"}

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00") ;

3. Vector<string> times = feedingTimes|["lumpy"];
times.add("4:00") ;
feedingTimes["lumpy"] = times;

Nested Data Structures Example

feedingTimes map

Goal: We want to add a second feeding time of 4:00 keys values

for nlumpyn- "hansa" {"12:00","3:00","9:00"}
{"8:00","1:00"}
. . : : "kandula" | ——
Which of the following three snippets of code will {"11:00" }
correctly update the state of the map? "lumpy" —_—
" " {"5:00","3:00","9:00",
surus - 12007}

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00") ;

[] Operator and = Operator Nuances

e When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

feedingTimes["lumpy"] .add("4:00") ;

[] Operator and = Operator Nuances

e When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

e However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.

// makes and modifies a copy, not the actual map value:
Vector<string> times = feedingTimes["lumpy"];
times.add("4:00") ;

[] Operator and = Operator Nuances

e When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

e However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.

e If you choose to store the internal data structure in an intermediate variable,
you must do an explicit reassignment to get your changes to persist.

// would store the modified "times” copy in the map
feedingTimes["lumpy"] = times;

Using Nested ADTs

e Powerful
o Can express highly structured and complex data
o Used in many real-world systems

e Tricky
o With increased complexity comes increased cognitive load in
differentiating the information stored at each level of the nesting.
o Specifically in C++, working with nested data structures can be tricky due
the use of references and copies. Follow the correct paradigms to stay on
track!

Examples of interesting problems to solve using
ADTs . | |
e Simulate potential impacts of flooding on a topographical landscape (how does
water flow outwards from a source and settle into the surrounding areas)
e Generate simulated text in the style of a certain author. Similarly, do textual
analysis to determine who the author of a provided piece of text was.
e Spell check and autocomplete for a word document editor
e Manage information about the natural landmarks and state parks in California
to help tourists plan their trip to the state
e Develop a ticketing management system for Stanford Stadium
e Aggregate and analyze reviews for an online shopping website
e Solve fun puzzles

Examples of interesting problems to solve using
ADTs . | |
e Simulate potential impacts of flooding on a topographical landscape (how does
water flow outwards from a source and settle into the surrounding areas)
e Generate simulated text in the style of a certain author. Similarly, do textual
analysis to determine who the author of a provided piece of text was.
e Spell check and autocomplete for a word document editor
e Manage information about the natural landmarks and state parks in California
to help tourists plan their trip to the state
e Develop a ticketing management system for Stanford Stadium
e Aggregate and analyze reviews for an online shopping website

Word Ladders

Word Ladders

e A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

Word Ladders

e A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

e A common tool for teaching
kids English vocabulary!

{ Word Ladder)

Word Ladders Shion e i iR B e
O [0
e A word ladder is a type of puzzle /d I B g
based on a start word and a target etart o — e
word. To solve the puzzle you must U g
generate a sequence of ! ’
intermediate words (which must be (b g 11—
valid English words), each of which b O o
is one letter different from the S | o)| =8
: . AT
previous one, that gets from the d 1' BN
start word to the target word. — M| e
e A common tool for teaching destination (h a i)
kids English vocabulary! word = =

Supor leochar Wionshoo « www. porteachenyworishoots.com

{ Word Ladder)

Word Ladders O S s a0
2 0

e A word ladder is a type of puzzle G g
based on a start word and a target s =)
word. To solve the puzzle you must U g
generate a sequence of i == ’
intermediate words (which must be (o d 11—
valid English words), each of which b O o
is on.e letter different from the T) i;}_\
previous one, that gets from the @) Al
start word to the target word. i :,::,} - o=

e A common tool for teaching (h d)
kids English vocabulary! ~ =

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

{ Word Ladder)

Word Ladders O S s a0
2 0

e A word ladder is a type of puzzle G g
based on a start word and a target s =)
word. To solve the puzzle you must U g
generate a sequence of i == ’
intermediate words (which must be (o d 11—
valid English words), each of which b O o
is on.e letter different from the T) i;}_\
previous one, that gets from the @) Al
start word to the target word. i :,::,} - o=

e A common tool for teaching (h d)
kids English vocabulary! ~ =

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

{ Word Ladder)

Word Ladders O S s a0
2 0

e A word ladder is a type of puzzle G g
based on a start word and a target s =)
word. To solve the puzzle you must b t)
generate a sequence of i = ’
intermediate words (which must be (o d 11—
valid English words), each of which b O o
is on.e letter different from the T) i;}_\
previous one, that gets from the @) Al
start word to the target word. i :,::,} - o=

e A common tool for teaching (h d)
kids English vocabulary! ~ =

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

{ Word Ladder)

Word Ladders as e it cco s ¢ g o s
O 0

e A word ladder is a type of puzzle G g
based on a start word and a target s =)
word. To solve the puzzle you must b U g
generate a sequence of i e :
intermediate words (which must be (o a d 11—
valid English words), each of which b O o
is one letter different from the : —— —) ,f‘cm
previous one, that gets from the d 1' Qg‘,{\g,,’g
start word to the target word. i :,::,} . o=

e A common tool for teaching (h d)
kids English vocabulary! ~ =

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

{ Word Ladder)

Word Ladders as e it cco s ¢ g o s
O 0

e A word ladder is a type of puzzle G g
based on a start word and a target s =)
word. To solve the puzzle you must b U g
generate a sequence of i e :
intermediate words (which must be (o a d 11—
valid English words), each of which b O t o
is one letter different from the : e) ,f‘cm
previous one, that gets from the d 1' Qg‘,{\g,,’g
start word to the target word. i :,::,} . o=

e A common tool for teaching (h d)
kids English vocabulary! ~ =

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

{ Word Ladder)

Word Ladders as e it cco s ¢ g o s
O 0
e A word ladder is a type of puzzle G g
based on a start word and a target s =)
word. To solve the puzzle you must b U g
generate a sequence of i e :
intermediate words (which must be (o a d 11—
valid English words), each of which b O t o
is one letter different from the : e) ,f‘cm
previous one, that gets from the r' d 1' Qg‘,{\g,,’g
start word to the target word. i :,::,} . o=
e A common tool for teaching (h d)
kids English vocabulary! ~ =

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

{ Word Ladder)

WO rd L a d d e rS Write the missing letler for each word, As you go down the ladder,

change one letter 1o show how 1he words connec!

e A word ladder is
based on a start
word. To solve th

generate a sequ|
intermediate wo
valid English wo
is one letter diffg
previous one, th
start word to theleergerrrorer
e A common tool for teaching
kids English vocabulary!

Supor leochor Wonshoo « wwwv. suporteachernworkshoats.com

Word Ladder Generation First Attempt

e Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem

Word Ladder Generation First Attempt

e Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem

o O O O O O

Start at the start word

Make an educated guess about what letter to change first

Modify that letter to get to a new English word

From there, make another educated guess about which letter to change and modify that letter
Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
If you hit a dead end, start over again, taking a different first step

Word Ladder Generation First Attempt

e Given a start word and a target word, a natural place to start would be to

model how a human might attempt to solve this problem

Start at the start word

Make an educated guess about what letter to change first

Modify that letter to get to a new English word

From there, make another educated guess about which letter to change and modify that letter
Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
If you hit a dead end, start over again, taking a different first step

e \What are the issues with this approach?

o Requires intuition — does a computer have intuition?
o Unorganized — no organized strategy for the exploration
o No guarantee that you'll ever find a solution!

o O O O O O

Breadth-First Search

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

e What's the simplest possible word ladder we could find?

o Ifthe words are only one letter different from one another (pig and fig), then finding the word
ladder is relatively easy — we look at all words that are one letter away from the current word

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

e What's the simplest possible word ladder we could find?
o Ifthe words are only one letter different from one another (pig and fig), then finding the word
ladder is relatively easy — we look at all words that are one letter away from the current word
e What's the next simplest possible word ladder we could find?

o Ifthe word ladder requires two steps, then we can break down the problem into the problem of
exploring one step away from all the words that are one step away from the starting word

Breadth-First Search

e We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

e What's the simplest possible word ladder we could find?

o Ifthe words are only one letter different from one another (pig and fig), then finding the word
ladder is relatively easy — we look at all words that are one letter away from the current word

e What's the next simplest possible word ladder we could find?

o Ifthe word ladder requires two steps, then we can break down the problem into the problem of
exploring one step away from all the words that are one step away from the starting word

e Important observation: In order to keep our search organized, we first
explore all word ladders of "length" 1 before we explore any word ladders of
"length" 2, and so on.

BFS Example

Breadth-First Search Example

e Let's try to apply this approach to find a word ladder starting at the word "map"
and ending at the word "way"

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

rap

start: map
destination: way

Breadth-First Search Example

man

7

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

_ start: map
Breadth-First Search Example destination: way

Note: For the sake of
brevity/demonstration, we
will not enumerate all
possible words that are 1
step away

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

_ start: map
Breadth-First Search Example destination: way

Observation: 2
steps away from
"map" is really just 1
step away from any
of its neighbors

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Visiting a word we've
already been at
before is basically like
going backwards in
our search. We want
to avoid this at all
costs!

_ start: map
Breadth-First Search Example destination: way

|dea: Keep track of a
collection of visited
words, and don't
double visit

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map

Breadth-First Search Example destination: way

start: map
destination: way

Breadth-First Search Example

start: map
destination: way

Breadth-First Search Example

start: map

Breadth-First Search Example destination: way

Success! We have
found a valid word
ladder

map -> may -> way

Formalizing BFS

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders

o Desired characteristics: We should be able to easily access the most recent word added to the
word ladder

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders
o Desired characteristics: We should be able to easily access the most recent word added to the
word ladder
e A data structure to store all the partial word ladders that we have generated so

far and have yet to explore
o Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a
certain length get explored before ladders of longer length get explored

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders
o Desired characteristics: We should be able to easily access the most recent word added to the
word ladder

e A data structure to store all the partial word ladders that we have generated so
far and have yet to explore

o Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a
certain length get explored before ladders of longer length get explored

e A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops

o Desired characteristics: We want to be able to quickly decide whether or not a word has been
seen before.

Breadth-First Search Data Structures

We need...

e A data structure
o Desired charac

word ladder
e A data structure

far and have yet
o Desired charac
certain length ¢

e A data structure

recent word added to the

e have generated so

luch that all ladders of a
red

pxplored so far, so

that we avoid getting stuck in loops

o Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders
O Stack<string>

e A data structure to store all the partial word ladders that we have generated so

far and have yet to explore

o Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a
certain length get explored before ladders of longer length get explored

e A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops

o Desired characteristics: We want to be able to quickly decide whether or not a word has been
seen before.

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders
O Stack<string>
e A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
O Queue<Stack<string>>

e A data structure to keep track of all the words that we've explored so far, so

that we avoid getting stuck in loops

o Desired characteristics: We want to be able to quickly decide whether or not a word has been
seen before.

Breadth-First Search Data Structures

We need...

e A data structure to represent (partial word) ladders
O Stack<string>

e A data structure to store all the partial word ladders that we have generated so
far and have yet to explore

O Queue<Stack<string>>

e A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops

O Set<string>

Breadth-First Search Pseudocode

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue

Set the current search word to be the word at the top of the ladder

If the current word is the destination, then return the current ladder

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Generate all "neighboring" words that are valid English words and one
letter away from the current word

Loop over all neighbor words

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Generate all "neighboring" words that are valid English words and one
letter away from the current word

Loop over all neighbor words

If the neighbor word hasn't yet been visited

Breadth-First Search Pseudocode

Create an empty queue and an empty set of visited locations

Create an initial word ladder containing the starting word and add it to the
queue

While the queue is not empty
Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Generate all "neighboring" words that are valid English words and one
letter away from the current word

Loop over all neighbor words
If the neighbor word hasn't yet been visited
Create a copy of the current ladder
Add the neighbor to the top of the new ladder and mark it visited
Add the new ladder to the back of the queue of partial ladders

Live Coding:
Implementlng BFS

[Qt Creato

Live Coding:
Implementing BFS

[Qt Creator]

We hope that you find this to be a helpful resovrce when working on
Acscignment 2. However, we do not encovrage trying to copy the code ac a
ctarting point. The probleme are dictinetly different, and you will benefit from
explicitly developing your own problem-gpecific pseudocode first.

A final note: const reference

e Passing a large object (e.g. a million-element Vector) by value makes a copy,
which is inefficient in time and space.

e Passing parameters by reference avoids making a copy, but creates risk that a
function may modify a piece of data that you don’t want it to edit.

e Solution: const referencel!

o The “by reference” part avoids a copy.
o The “const” (constant) part means that the function can’t change that argument.

void proofreadLongEssay(const string& essay) {
/* can read, but not change, the essay. */

Example from slides made by Keith Schwarz

