
Using Nested ADTs:
Breadth-First Search

Preparing you for Assignment 2!

Today’s
question

How can we use
abstractions (ADTs) to
solve problems?

Nested Data Structures

Nested Data Structures

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

Nested Data Structures

● Nesting data structures (using one ADTs as the data type inside of another
ADT) is a great way of organizing data with complex structure.

● You will thoroughly explore nested data structures (specifically nested Sets and
Maps) in Assignment 2!

An example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo.

An example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo.

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

An example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

An example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>>

Quick lookup by animal name

An example

● Imagine we are designing a system to keep track of feeding times for the
different animals at a zoo

● Requirements: We need to be able to quickly look up the feeding times
associated with an animal if we know it's name. We need to be able to store
multiple feeding times for each animal. The feeding times should be stored in
the order in which the feedings should happen.

● Data Structure Declaration
○ Map<string, Vector<string>> Store multiple, ordered feeding times

per animal

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

Wonderful diagram and animal naming borrowed from Sonja Johnson-Yu

Nested Data Structures Example

map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00"}

{"5:00","3:00","9:00","2:00"}

keys values

How do we use modify the internal
values of this map?

Nested Data Structures Example

Goal: We want to add a second feeding time of 4:00
for "lumpy".

feedingTimes map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

Nested Data Structures Example

Goal: We want to add a second feeding time of 4:00
for "lumpy".

Which of the following three snippets of code will
correctly update the state of the map?

feedingTimes map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] = times;

Nested Data Structures Example

Goal: We want to add a second feeding time of 4:00
for "lumpy".

Which of the following three snippets of code will
correctly update the state of the map?

feedingTimes map

"hansa"
"kandula"
"lumpy"
"surus"

{"12:00","3:00","9:00"}

{"8:00","1:00"}

{"11:00", "4:00"}

{"5:00","3:00","9:00",

"2:00"}

keys values

1. feedingTimes["lumpy"].add("4:00");

2. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

3. Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");
feedingTimes["lumpy"] = times;

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

feedingTimes["lumpy"].add("4:00");

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

● However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.

// makes and modifies a copy, not the actual map value:
Vector<string> times = feedingTimes["lumpy"];
times.add("4:00");

[] Operator and = Operator Nuances

● When you use the [] operator to access an element from a map, you get a
reference to the map, which means that any changes you make to the
reference will be persistent in the map.

● However, when you use the = operator to assign the result of the [] operator to
a variable, you get a copy of the internal data structure.

● If you choose to store the internal data structure in an intermediate variable,
you must do an explicit reassignment to get your changes to persist.

// would store the modified `times` copy in the map
feedingTimes["lumpy"] = times;

Using Nested ADTs

● Powerful
○ Can express highly structured and complex data
○ Used in many real-world systems

● Tricky
○ With increased complexity comes increased cognitive load in

differentiating the information stored at each level of the nesting.
○ Specifically in C++, working with nested data structures can be tricky due

the use of references and copies. Follow the correct paradigms to stay on
track!

Examples of interesting problems to solve using
ADTs
● Simulate potential impacts of flooding on a topographical landscape (how does

water flow outwards from a source and settle into the surrounding areas)
● Generate simulated text in the style of a certain author. Similarly, do textual

analysis to determine who the author of a provided piece of text was.
● Spell check and autocomplete for a word document editor
● Manage information about the natural landmarks and state parks in California

to help tourists plan their trip to the state
● Develop a ticketing management system for Stanford Stadium
● Aggregate and analyze reviews for an online shopping website
● Solve fun puzzles

Examples of interesting problems to solve using
ADTs
● Simulate potential impacts of flooding on a topographical landscape (how does

water flow outwards from a source and settle into the surrounding areas)
● Generate simulated text in the style of a certain author. Similarly, do textual

analysis to determine who the author of a provided piece of text was.
● Spell check and autocomplete for a word document editor
● Manage information about the natural landmarks and state parks in California

to help tourists plan their trip to the state
● Develop a ticketing management system for Stanford Stadium
● Aggregate and analyze reviews for an online shopping website
● Solve fun puzzles

Word Ladders

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

h

start
word

destination
word

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

r

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

r

h

Word Ladders

● A word ladder is a type of puzzle
based on a start word and a target
word. To solve the puzzle you must
generate a sequence of
intermediate words (which must be
valid English words), each of which
is one letter different from the
previous one, that gets from the
start word to the target word.

● A common tool for teaching
kids English vocabulary!

g

b

a

t

r

h

How can we come up
with an algorithm to
generate these word
ladders?

Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem

Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem
○ Start at the start word
○ Make an educated guess about what letter to change first
○ Modify that letter to get to a new English word
○ From there, make another educated guess about which letter to change and modify that letter
○ Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
○ If you hit a dead end, start over again, taking a different first step

Word Ladder Generation First Attempt

● Given a start word and a target word, a natural place to start would be to
model how a human might attempt to solve this problem
○ Start at the start word
○ Make an educated guess about what letter to change first
○ Modify that letter to get to a new English word
○ From there, make another educated guess about which letter to change and modify that letter
○ Keep repeating this process until you reach the target word (unlikely) or hit a dead end (likely)
○ If you hit a dead end, start over again, taking a different first step

● What are the issues with this approach?
○ Requires intuition – does a computer have intuition?
○ Unorganized – no organized strategy for the exploration
○ No guarantee that you'll ever find a solution!

Breadth-First Search

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word

ladder is relatively easy – we look at all words that are one letter away from the current word

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word

ladder is relatively easy – we look at all words that are one letter away from the current word

● What's the next simplest possible word ladder we could find?
○ If the word ladder requires two steps, then we can break down the problem into the problem of

exploring one step away from all the words that are one step away from the starting word

Breadth-First Search

● We need a structured way to explore words that are "adjacent" to one another
(one letter difference between the two of them)

● What's the simplest possible word ladder we could find?
○ If the words are only one letter different from one another (pig and fig), then finding the word

ladder is relatively easy – we look at all words that are one letter away from the current word

● What's the next simplest possible word ladder we could find?
○ If the word ladder requires two steps, then we can break down the problem into the problem of

exploring one step away from all the words that are one step away from the starting word

● Important observation: In order to keep our search organized, we first
explore all word ladders of "length" 1 before we explore any word ladders of
"length" 2, and so on.

BFS Example

Breadth-First Search Example

● Let's try to apply this approach to find a word ladder starting at the word "map"
and ending at the word "way"

Breadth-First Search Example

map

start: map
destination: way

Breadth-First Search Example

map

start: map
destination: way

0 steps away

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

may

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap Note: For the sake of
brevity/demonstration, we
will not enumerate all
possible words that are 1
step away

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away

rap
man

mop

maynap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

Observation: 2
steps away from
"map" is really just 1
step away from any
of its neighbors

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Visiting a word we've
already been at
before is basically like
going backwards in
our search. We want
to avoid this at all
costs!

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

map

Idea: Keep track of a
collection of visited
words, and don't
double visit

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

man

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

man

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

way

Breadth-First Search Example

map

start: map
destination: way

0 steps away
1 step away
2 steps away

rap
man

mop

maynap

lop

mow

ray

way

Success! We have
found a valid word
ladder
map -> may -> way

Formalizing BFS

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

● A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

● A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

● A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders
○ Desired characteristics: We should be able to easily access the most recent word added to the

word ladder

● A data structure to store all the partial word ladders that we have generated so
far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

● A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

What data
structures should we
use for each of these
components?

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so

far and have yet to explore
○ Desired characteristics: We want to maintain an ordering of ladders such that all ladders of a

certain length get explored before ladders of longer length get explored

● A data structure to keep track of all the words that we've explored so far, so
that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so

far and have yet to explore

○ Queue<Stack<string>>
● A data structure to keep track of all the words that we've explored so far, so

that we avoid getting stuck in loops
○ Desired characteristics: We want to be able to quickly decide whether or not a word has been

seen before.

Breadth-First Search Data Structures

We need…

● A data structure to represent (partial word) ladders

○ Stack<string>
● A data structure to store all the partial word ladders that we have generated so

far and have yet to explore

○ Queue<Stack<string>>
● A data structure to keep track of all the words that we've explored so far, so

that we avoid getting stuck in loops

○ Set<string>

Breadth-First Search Pseudocode

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one
letter away from the current word
Loop over all neighbor words

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one
letter away from the current word
Loop over all neighbor words

If the neighbor word hasn't yet been visited

Breadth-First Search Pseudocode
Create an empty queue and an empty set of visited locations
Create an initial word ladder containing the starting word and add it to the
queue
While the queue is not empty

Remove the next partial ladder from the queue
Set the current search word to be the word at the top of the ladder
If the current word is the destination, then return the current ladder
Generate all "neighboring" words that are valid English words and one
letter away from the current word
Loop over all neighbor words

If the neighbor word hasn't yet been visited
Create a copy of the current ladder
Add the neighbor to the top of the new ladder and mark it visited
Add the new ladder to the back of the queue of partial ladders

Live Coding:
Implementing BFS
[Qt Creator]

Live Coding:
Implementing BFS
[Qt Creator]

We hope that you find this to be a helpful resource when working on
Assignment 2. However, we do not encourage trying to copy the code as a
starting point. The problems are distinctly different, and you will benefit from
explicitly developing your own problem-specific pseudocode first.

A final note: const reference

● Passing a large object (e.g. a million-element Vector) by value makes a copy,
which is inefficient in time and space.

● Passing parameters by reference avoids making a copy, but creates risk that a
function may modify a piece of data that you don’t want it to edit.

● Solution: const reference!
○ The “by reference” part avoids a copy.
○ The “const” (constant) part means that the function can’t change that argument.

void proofreadLongEssay(const string& essay) {
/* can read, but not change, the essay. */

}

Example from slides made by Keith Schwarz

