
Welcome to CS106B:
Programming Abstractions!

What’s your hometown?
Respond at PollEv.com/jennyhan903

Who are we?

Kylie Jue

Jenny Han

a,b,c

Trip Master

Today’s
questions

Why take CS106B?

What is an abstraction?

What is CS106B?

Why C++?

What’s next?

Why take CS106B?

"Coding is a technical skill: the
practice of developing a set of
instructions that a computer can
understand and execute.” (Digital Promise 2017)

(Wing, 2006)

“Computer science is an academic
discipline: ‘the study of computers

and algorithmic processes,
including their principles, their

hardware
and software designs, their

applications, and
 their impact
on society’”

"Computational thinking is a
problem solving process: ‘a
way of solving problems,
designing systems, and
understanding human
behavior that draws on
concepts fundamental to
computer science… a
fundamental skill for
everyone, not just
computer scientists’”

Defining key terms

https://digitalpromise.dspacedirect.org/bitstream/handle/20.500.12265/62/Computational%20Thinking%20for%20a%20Computational%20World.pdf?sequence=1&isAllowed=y
https://dl.acm.org/doi/fullHtml/10.1145/1118178.1118215

Defining key terms

● Coding as a technical skill

● Computer science as an academic discipline

● Computational thinking as a problem-solving process

CS education is more than just
“learning how to code”!

COMMUNICATION +
CRITICAL
 THINKING

ENGLISH
LANGUAGE

ARTS
WRITING

Phases of language development

1. Discovery that language is a pattern of sounds that takes on meaning and
purpose

2. Participation in everyday social aspects of language that enable an
understanding of encoded cultural values and assumptions

3. Ability to self-reflect on the use of language and to see language as a “tool for
thinking” and communicating thoughts, even when not actively speaking or
interacting with others

(Wells 1981) the acquisition of literacy

https://books.google.com/books?hl=en&lr=&id=HV23MTRFMf8C&oi=fnd&pg=PA240&dq=phases+of+language+development+wells+1981&ots=S689T1F99z&sig=do-b1BSoAxZdWEy7u4pqih3ttxc#v=onepage&q=phases%20of%20language%20development%20wells%201981&f=false

What CS106B is not

● A course to teach you how to program from scratch

● A course that will teach you the specifics of the C++ language

What CS106B is

● A logical follow-up course to an introductory computer science class

● A course that will give you practice with computational thinking skills
through basic C++ coding

● A survey of data structures and algorithms to prepare you for future
exploration in computing and to build your understanding of
technology

What is an abstraction?

What is an abstraction?
Talk to a neighbor! What comes to mind when you think of the word

abstraction?

abstraction
Design that hides the details of how

something works while still allowing the user
to access complex functionality

(ie. design that makes complex
systems simple to use)

Definition

Examples of abstraction

Examples of abstraction

Examples of abstraction

Examples of abstraction

Abstractions are tools to help us solve
complex problems!

Key idea

Through a simpler interface, users are able to take full
advantage of a complex system without needing to know
how it works or how it was made.

Complex problem: count the number of animals

Abstractions are tools (for your brain!)

2 + 2 = 4● Numbers are abstract
representations.

● Addition is an algorithm that
helps us count things. ab

st
ra

ct
io

n!

If we didn’t have numbers as abstractions….

I’d have to
show you 100
objects every
time I wanted
to express the
idea of “100”

…is everything an
abstraction? yes

language

emotions

numbers

knowledge

love

the universe

Abstractions are tools to help us solve
complex problems!

Key idea

int sum = 0;
int num_busters = 2;
int num_perrys = 2;
sum = num_busters + num_perrys

We built computers to help us
solve complex problems.

ab
st

ra
ct

io
n!

● We use programming languages as
an abstraction to help us
communicate our thoughts to
computers.

2+2=4
YOUR
THOUGHTS

int sum = 0;
int num_busters = 2;
int num_perrys = 2;
sum = num_busters + num_perrys

We built computers to help us
solve complex problems.

ab
st

ra
ct

io
n!

ab
st

ra
ct

io
n!

● We use programming languages as
an abstraction to help us
communicate our thoughts to
computers.

● Programming languages are an
abstraction for digital bits - 0s and
1s that help computers represent
everything

2+2=4
YOUR
THOUGHTS

int sum = 0;
int num_busters = 2;
int num_perrys = 2;
sum = num_busters + num_perrys

We built computers to help us
solve complex problems.

ab
st

ra
ct

io
n!

ab
st

ra
ct

io
n!

ab
st

ra
ct

io
n!

● We use programming languages as
an abstraction to help us
communicate our thoughts to
computers.

● Programming languages are an
abstraction for digital bits - 0s and
1s that help computers represent
everything

● 0s and 1s are abstractions for tiny
physical switches in our computer.

2+2=4
YOUR
THOUGHTS

If abstractions didn’t exist…

We’d have to physically
reprogram our hardware
every time we wanted to
solve a problem like 2 + 2

“low-level”

Luckily, in CS106B, we’re
only focused on the
highest level of
abstraction → ab

st
ra

ct
io

n!

2+2=4YOUR
THOUGHTS
/ THE REAL
WORLD

int sum = 0;
int num_busters = 2;
int num_perrys = 2;
sum = num_busters + num_perrys

Take CS107!

Take E40M!

PROGRAMMING
LANGUAGE

Just to recap

● Programming languages are abstractions through which we communicate with
computers.

● Key idea: Abstractions are simple tools that let users to control a complex
system without needing to know the low-level details (how it works or how it
was made).

● People are important part of designing abstractions (i.e. What should that
simpler interface look like?)

● CS106B focuses on the design and/or use of abstractions in computer science.

Attendance ticket:
https://tinyurl.com/june20cs106b

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/june20cs106b

What is CS106B?
(the nuts and bolts)

abstraction boundary
(what the abstraction looks like)

the user/client side
(how the abstraction is used)

the implementation side
(how the abstraction is built)

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

How to use abstractions created by
others (Stanford C++ libraries)

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

How to design abstractions
for others to use

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

How lower-level abstractions are used
to implement higher-level abstractions

abstract data structures
(vectors, maps, etc.)

classes

object-oriented programming

arrays

dynamic memory
management

linked data structures

algorithmic analysistesting recursive problem-solving

Core Tools

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Learning goals

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

● I can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

● I can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

● I can evaluate design tradeoffs when creating data structures and algorithms or utilizing
them to implement technological solutions.

Learning goals

● I am excited to use programming to solve real-world problems I encounter outside class.

● I recognize and understand common abstractions in computer science.

● I can identify programmatic concepts present in everyday technologies because I
understand how computers process and organize information.

● I can break down complex problems into smaller subproblems by applying my
algorithmic reasoning and recursive problem-solving skills.

● I can evaluate design tradeoffs when creating data structures and algorithms or utilizing
them to implement technological solutions.

Overarching questions

Overarching questions

1. What is possible with technology and code? What isn’t possible?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

3. What makes for a “good” algorithm or data structure? Why?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

3. What makes for a “good” algorithm or data structure? Why?

4. Which problems should I solve with algorithms and data structures?
What does a responsible programmer do when using data about real
people?

Overarching questions

1. What is possible with technology and code? What isn’t possible?

2. How can I use programming to solve problems that I otherwise would
not be able to?

3. What makes for a “good” algorithm or data structure? Why?

4. Which problems should I solve with algorithms and data structures?
What does a responsible programmer do when using data about real
people?

Course norms

Course culture + norms

● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

Course culture + norms

● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

Course culture + norms

● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

1. Safe environment
○ Be kind and respectful to one another in lecture, in section, and on Ed.

Course culture + norms

● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

1. Safe environment
○ Be kind and respectful to one another in lecture, in section, and on Ed.

2. Active engagement
○ Put your best foot forward in all parts of your learning process: lectures,

assignments, etc.

Course culture + norms

● Please put your mental health and wellbeing first this quarter.

● We’re here to learn - including your instructors!

What makes for good learning?

1. Safe environment
○ Be kind and respectful to one another in lecture, in section, and on Ed.

2. Active engagement
○ Put your best foot forward in all parts of your learning process: lectures,

assignments, etc.
3. Celebration of struggle

We can center questions around learning.

Thinking about your own learning (metacognition) is important!

We can center questions around learning.

Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

We can center questions around learning.

Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

1. Questions that will enable you to understand the rest of the topic/lecture.
2. Questions will expand your depth of knowledge but that your immediate

understanding does not depend upon.

We can center questions around learning.

Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

1. Questions that will enable you to understand the rest of the topic/lecture.

Strategy: Ask immediately by raising your hand. If you found something confusing,
someone else probably did, too. And remember, celebrate struggle!

We can center questions around learning.

Thinking about your own learning (metacognition) is important!

Sometimes asking a question immediately and waiting for an answer can distract
from the learning experience (and the question will often get answered in a slide or
two).

There are two (vastly oversimplified) types of questions:

2. Questions will expand your depth of knowledge but that your immediate
understanding does not depend upon.

Strategy: Write down your question and ask when we transition to a new topic.
We’ll also often stop for questions then. Or write code to test your question!

We can center questions around inclusivity.

There is also a third type of question:

Some students ask questions that are not really questions so much as opportunities
to demonstrate knowledge of jargon or facts that are beyond the scope of the topic
at hand. This can have a discouraging effect on other students. If you find yourself
wanting to make such a question or comment in lecture, I encourage you to
consider office hours as a better venue for exploring that topic with me.

- Cynthia Lee, Stanford Senior Lecturer in CS

We can center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

We can center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

Curiosity is wonderful, and we’re happy to talk about advanced CS topics with you
during office hours.

We can center questions around inclusivity.

One of the most difficult things about teaching CS is catering to an audience of
diverse backgrounds and prior programming experience.

Curiosity is wonderful, and we’re happy to talk about advanced CS topics with you
during office hours.

But we also don’t want to send the message that you need to know about these
things when entering CS106B.

● In particular, we don’t expect students in this class to have prior C++
knowledge or knowledge of the topics that we explicitly introduce from
scratch. So please keep this mind when you’re asking questions!

Course logistics

Is CS106B the right course for me?

● Take the CS106B C++ survey. This will give you a sense of the core topics we
expect you to be familiar with from prior programming experience.

● Read the course placement guide on the class website.

● You cannot enroll in both CS106A and CS106B simultaneously, but you are
welcome to shop both to figure out which is a better fit.

https://docs.google.com/forms/d/e/1FAIpQLScQ58ygRKQXpdN_j69TT8LaOpiL6UourTd9hfYSdesq6aEgPA/viewform
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1228/course_placement

cs106b.stanford.edu https://us.edstem.org/

http://cs106b.stanford.edu/
https://edstem.org/us/courses/6471/discussion/

How many units?

Diagram courtesy of Chris Piech

How will I be
assessed?

What we will ask you to do

What we will ask you to do

Programming assignments

● There will be 6 total
○ A1: C++ Legs
○ A2: Using abstractions (abstract data structures)
○ A3: Recursion
○ A4: Defining the abstraction boundary itself
○ A5: Implementation-side of the abstraction boundary
○ A6: Real-world algorithms

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

✓ Meets requirements, possibly with a few small problems

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

✓+ Satisfies all requirements for the assignment
✓ Meets requirements, possibly with a few small problems
✓- Has problems serious enough to fall short of requirements

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

++ Absolutely fantastic submission (extremely rare)
+ "Perfect" or exceeds our standard expectations
✓+ Satisfies all requirements for the assignment
✓ Meets requirements, possibly with a few small problems
✓- Has problems serious enough to fall short of requirements
- Extremely serious problems, but shows some effort
-- Shows little effort and does not represent passing work

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets

++ Absolutely fantastic submission (extremely rare)
+ "Perfect" or exceeds our standard expectations
✓+ Satisfies all requirements for the assignment
✓ Meets requirements, possibly with a few small problems
✓- Has problems serious enough to fall short of requirements
- Extremely serious problems, but shows some effort
-- Shows little effort and does not represent passing work

Why?

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check in functionality

○ Must be turned in up to three days after the next assignment is
due.

○ We want to give you opportunities to demonstrate learning!
○ The revisions must include the updated code, tests to catch

previous errors, and must not introduce new errors.
○ Functionality grade capped at a check.

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check in functionality
● 24-hour grace period for each assignment (specified per-assignment)

○ Most people will submit by the deadline. (“on-time” bonus)
○ The grace period is a free 24-hour extension that you can use if

you have a particularly difficult week.

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check in functionality
● 24-hour grace period for each assignment

Programming assignments

● There will be 6 total
● Graded on functionality and style using buckets
● You can submit revisions if you receive below a check in functionality
● 24-hour grace period for each assignment

All deadlines are at 11:59pm PDT
(including for revisions).

What we will ask you to do

Assessments

● Mid-quarter exam

● Final project

Assessments

● Mid-quarter exam
○ Opportunity to evaluate your understanding of the core,

fundamental topics from the first 4 weeks of the course
○ Will be in lecture on Monday, July 11 in person (SCPD students will

get more logistical information later)
○ We’ll provide software for you to take the diagnostic on your

computer.

● Final project

Assessments

● Mid-quarter exam

● Final project
○ Choose a topic area that you’re interested in and that you would

like to improve in
○ Write your own section/midterm problem + solution
○ Present the problem to your section leader at the end of the

quarter
○ More guidelines will be released after the midterm is over

What we will ask you to do

Why is lecture required, and how will that work?

● Not just us talking at you: active learning exercises

● Ask questions during class; we’ll also stick around to answer questions
afterward!

● Quick lecture-to-usage turnaround for concepts covered in class

● At a random time during lecture, we’ll have an attendance ticket. You
must turn in the attendance ticket to get credit for attending lecture.

Section attendance

● Sign up for section by Tuesday (today) at 5pm at cs198.stanford.edu
○ Sign-ups are already open and close tonight at 5pm PDT!
○ Sections with remaining spots will open for signups shortly after

assignments have been made.

● Sections start Wednesday (tomorrow!)

https://cs198.stanford.edu/

How do I get help?

Section Leaders
(and some not pictured!)

What the course staff do

● Clarify conceptual material

● Help you develop good debugging practices

● Answer any administrative questions

● Chat about CS and life in general!

What the course staff do

● Clarify conceptual material

● Help you develop good debugging practices

● Answer any administrative questions

● Chat about CS and life in general!

We’re always happy to help you apply CS and the concepts you’ve learned in class to
real-world applications/areas you’re interested in.

What the course staff don’t do

● Write your code for you

● Solve your bugs on assignments

What the course staff don’t do

● Write your code for you

● Solve your bugs on assignments

This is how you learn as a student!

Resources for getting help

● LaIR (general office hours)
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

Resources for getting help

● LaIR (general office hours)
○ Open Sunday through Thursday in Durand 353 (remote access is

available for SCPD students)
■ Sunday/Wednesday/Thursday: 7pm-11pm
■ Monday/Tuesday: 5pm-9pm

○ Starts Wednesday, June 22
● Your section leader
● Kylie’s + Jenny’s + Trip’s office hours
● Ed

Resources for getting help

● LaIR (general office hours)
● Your section leader
● Kylie’s + Jenny’s + Trip’s office hours

○ Group office hours
○ Individual office hours - please only sign up for one 15-min slot!

● Ed

Resources for getting help

● LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

Resources for getting help

● LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

Conceptual question?

Resources for getting help

● (C)LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

Conceptual question?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

Debugging help + code
questions?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

Administrative
questions?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

General CS + life
questions?

Resources for getting help

● LaIR
● Your section leader
● Kylie/Jenny/Trip office hours
● Ed

When in doubt, check the Course Communication guidelines!

The Summer Academic Resource Center (SARC) also offers
tutoring and academic support separate from our course.

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1218/course_communication
https://summer.stanford.edu/sarc

Extra Practice sessions

● 1 extra hour of content review, practice problems, and homework
support outside your required section.

● If you feel that more review in a small-group setting would help you
succeed in CS106A/B, these sessions are for you.

● If you're looking for additional challenges or extensions to the course
content, these sessions may not be for you.

● Capped at 10 people - you commit for the entire quarter.

Fill out this interest form by Thursday, June 23:
https://tinyurl.com/extrapracticecs106

https://tinyurl.com/extrapracticecs106

Honor Code

Stanford’s Honor Code

● All students in the course must abide by the Stanford Honor Code.

● Make sure to read over the Honor Code handout on the CS106B website for
CS-specific expectations.

● Acknowledge any help you get outside course staff directly in your work.

● We run code similarity software on all of your programs and check final
projects against online resources.

● Anyone caught violating the Honor Code will automatically fail the course.

https://communitystandards.stanford.edu/policies-and-guidance/honor-code
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1218/honor_code

Why C++?

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)
○ This means that before running a C++ program, you must first compile it to

machine code.

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ gives us access to lower-level computing resources (e.g. more direct
control over computer memory)
○ This makes it a great tool for better understanding abstractions!

How is C++ different from other languages?

● C++ is a compiled language (vs. interpreted)

● C++ is gives us access to lower-level computing resources (e.g. more direct
control over computer memory)

● If you’re coming from a language like Python, the syntax will take some getting
used to.
○ Like learning the grammar and rules of a new language, typos are

expected. But don’t let this get in the way of working toward literacy!

Demo program!

The structure of a program
#include <iostream>

#include "console.h"

using namespace std;

// The C++ compiler will look for a function

// called “main”

int main() {

 cout << "Hello, world!" << endl;

 return 0; // must return an int to indicate

 // successful program completion

}

import sys

This function does not need to be called “main”

def main():

 print('Hello, world!')

if __name__ == '__main__':

 # Any function that gets placed here will get

 # called when you run the program with

 # `python3 helloworld.py`

 main()

C++ Python

What’s next?

Applications of abstractions

Reminders

● Complete the C++ survey ASAP.

● Fill out your section time preferences by today at 5pm PDT.
○ Make sure to check what time you’ve been assigned tomorrow morning.

● If you’re interested in the extra help session, fill out this form by Thursday.

● Finish Assignment 0 by Friday.
○ If you’re running into issues with Qt Creator, come to the Qt Installation

Help Session on Wednesday (tomorrow) from 1:15-3:45pm PDT in Huang
019.

https://docs.google.com/forms/d/e/1FAIpQLScQ58ygRKQXpdN_j69TT8LaOpiL6UourTd9hfYSdesq6aEgPA/viewform
https://tinyurl.com/extrapracticecs106
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1228/assignments/0-namehash/

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Tomorrow…

Life after CS106B!

C++ basics
Implementation

User/client

Core
Tools

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

We’re excited to move
across the abstraction

boundary together!

