
Strings and Testing
What strategies have resulted in effective breakout

rooms for you during online learning?
(put your answers the chat)

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap

Life after CS106B!

C++ basics
Implementation

User/client

Core
Tools testing

Today’s
questions

C++ survey questions + review
(questions from you!)

What’s special about strings in C++?

How do we test code in CS106B?

What’s next?

C++ survey questions

Questions you asked!

We looked over your questions in the C++ survey…

● Many questions/topics Jenny already covered in Wednesday’s lecture.

● I’ll review some of the most high-demand topics today.
.

● Other questions will get covered in upcoming lectures.

● Some specific questions + more supplementary questions will get answered in
an upcoming Ed post.

Questions that will be covered in upcoming lectures

● Data Structures
○ No questions in mind at the moment. I guess it would just be helpful to go over dictionaries
○ What roles do dictionaries play in C++?
○ How do you create lists/dictionaries through C++ like we learned in CS 106A for python?
○ How the data types we know and love from python translate to C++.
○ Boolean expressions and useful standard mathematical functions that we have at our disposal.

Also what sorts of iterable types exist (are there arrays? lists? tuples? etc)
○ Vectors in C++ and how they're different from numpy

● Object Oriented Programming
○ What are classes?
○ C++ Class, private and public sections

● Low Level C++
○ newer C++ features, pointers

Questions we’ll answer in the "Bonus" Ed Post

● Language Comparisons and Transitions (C vs. C++ vs. Python vs. many more)
○ How the pros and cons of C++ can be related to where it's used in industry
○ A brief comparison (field of application, shrinks and weaknesses) between Python and C++
○ Some advantages of C++ over Python; why some industries rely heavily on it while others don't
○ What are the most important functional/syntactical differences when coding in C++ vs C?
○ I took CS106A [...] in Java, so I would love a little clarity regarding how C++ is similar to Java
○ General comments on differences between Python/MATLAB.
○ What are the main misconceptions on C++? What are common mistakes of going from one

language to another? What are key things to look out for?

● Miscellaneous
○ Can you review function prototypes and why they are used?
○ Can you talk about include statements/importing libraries in detail?
○ How to be effective in using online resources or the textbook while working on assignments.
○ How can computer code be used to communicate with machines?

Questions you asked: Utility functions

● “Utility functions” is just a term we use to refer to commonly used functions
that are often built-into the C++ language or are similar in functionality to
built-in functions in Python.
○ It’s not a formal term, just a useful catch-all phrase. We don’t expect you to identify what

functions are/are not “utility” functions.

● We’ll be learning about string-specific utility functions today! (some built-in and
some not)

● We’ll cover important ones in class or mention them in the useful tips section of
assignment handouts.

Questions you asked: Style + Formatting

● We prefer to put the opening curly brace at the end of the line where a
function/control structure begins. For example:

if (blah blah) {

…
}

Some people also like putting it on its own line – either is fine as long as you’re
consistent! But you should indent by one level everything within the curly
braces.

● Read through the CS106B style guide on the website!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1218/resources/style_guide.html

Questions you asked: Function prototypes

Does the compiler read functions from the top of the script to the bottom, or in
order of when they are called?

Top to bottom – this is why function prototypes + forward declarations are useful!

Example function prototype:

returnType functionName(varType parameter1, varType parameter2, ...);

This usually go toward the top of the file and allow you to use functions above the
place where they’re fully defined. We’ll go into more depth on this later (when we
talk about classes) so don’t worry about them for now!

Questions you asked: void + return types

returnType functionName(varType parameter1, varType parameter2, ...);

The returnType indicates the type of data your function is outputting (e.g. int,
double, string, etc.)

We use void to indicate that your function is not outputting, or returning, anything
back to the caller function (i.e. where it was called).

For example, functions that are used to decompose out logic for just printing
something on the screen might not need to return anything to main.

Questions you asked: void + return types

For example, functions that are used to decompose out logic for just printing
something on the screen might not need to return anything to main.

void printName(string name) {
cout << “Hello, ” << name << “!” << endl;

}

int main() {
string userName = getLine(“Please give me your name: ”);
printName(username);
string friendName = getLine(“What’s your friend’s name? ”);
printName(friendName);

}

Questions you asked: Console output

When concatenating strings with variables is there a need to use '+' signs? How
are these understood and differentiated if only using '<<' signs?

Great question! The `<<` signs are actually only for console output. You can’t use
them for combining strings to store in a variable. For concatenating strings
together and storing them, you need to use the `+` operator.

Questions you asked: Transitioning to C++

What would you recommend is the best way to help the transition from [insert
language here] to C++. Are there any resources that can expedite the process?

What's the best way to find documentation about standard/Stanford C++ libraries?

As we go, we’ll talk about common C++ misconceptions coming from other
languages. The Ed post will also go into more detail for specific languages and
their differences.

Under “Quick Links” on the CS106B website homepage:

Review: Loops + Data Types

Loops

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

Execution continues until
expression evaluates to false

while loops

● Loops allow you to repeat the execution of a certain block of code multiple
times

● while loops are great when you want to continue executing something until a
certain condition is met and you don't know exactly how many times you want
to iterate for

while (expression) {
 statement;
 statement;
 ...
}

int i = 0;
while (i < 5) {
 cout << i << endl;
 i++;
}

Output:
0
1
2
3
4

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

● for loop syntax in C++ can look a little strange, let's investigate!

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
} The initializationStatement

happens at the beginning of the loop,
and initializes a variable.

E.g., int i = 0.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

The testExpression is evaluated
initially, and after each run through the
loop, and if it is true, the loop
continues for another iteration.

E.g., i < 3.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

The updateStatement happens after
each loop, but before
testExpression is evaluated.

E.g., i++.

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for (int i = 0; i < 3; i++) {
 cout << i << endl;
}

for loops

● for loops are great when you have a known, fixed number of times that you
want to execute a block of code

for (initializationStatement; testExpression; updateStatement) {
 statement;
 statement;
 ...
}

for (int i = 0; i < 3; i++) {
 cout << i << endl;
}

Output:
0
1
2

Putting it together with
spaceship.cpp

#include <iostream>

using namespace std;

int main() {

 /* TODO: Your code goes here! */

 return 0;

}

Write a program that prints out the calls for a
spaceship that is about to launch.
Countdown the numbers from 10 to 1 and
then print “Liftoff.”

def main():

 for i in range(10, 0, -1):

 print(i)

 print("Liftoff")

if __name__ == "__main__":

 main()

Python C++

Ed activity
(workspaces)

https://edstem.org/us/courses/6471/workspaces/

Recall data types...

int num = 5; // declare a new integer var

char letter = 'x'; // b is a char ("character")

double decimal = 1.06; // d is a double, a type
used to represent decimal numbers

string sentence = "this is a C++ string";

bool isRaining = false;

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Recall data types...

int num = 5; // declare a new integer var

char letter = 'x'; // b is a char ("character")

double decimal = 1.06; // d is a double, a type
used to represent decimal numbers

string sentence = "this is a C++ string";

bool isRaining = false;

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

We forgot to mention booleans
on Wednesday!

Recall data types...

int num = 5; // declare a new integer var

char letter = 'x'; // b is a char ("character")

double decimal = 1.06; // d is a double, a type
used to represent decimal numbers

string sentence = "this is a C++ string";

bool isRaining = false;

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

Note: Types are C++’s way of knowing how much space to reserve on
your computer for a piece of data/info

Recall data types...

int num = 5; // declare a new integer var

char letter = 'x'; // b is a char ("character")

double decimal = 1.06; // d is a double, a type
used to represent decimal numbers

string sentence = "this is a C++ string";

bool isRaining = false;

a

12in
t

c

'x'ch
ar

d

1.06

do
ub

le

s

"this is a
C++ string"st

rin
g

This is why functions have return types (what type of info they
output) and variables have types (what type of info they store)!

Recall data types...

int num = 5; // declare a new integer var

char letter = 'x'; // b is a char ("character")

double decimal = 1.06; // d is a double, a type
used to represent decimal numbers

string sentence = "this is a C++ string";

bool isRaining = false; do
ub

le

s

"this is a
C++ string"st

rin
g

What’s special about
strings in C++?

string
A data type that represents a sequence of

characters

Definition

string
A data type that represents a sequence of

characters

Definition

Characters can be
letters, digits, symbols
(&, !, ~), etc.

Strings review

Strings are made up of characters of type char, and the characters of a
string can be accessed by the index in the string (this should be familiar):

' ' ' ' ' ' ' ' ' ' ' '

string activity
[demo + poll]

What are the key characteristics of strings in C++?

● Strings are mutable in C++
○ Unlike in Python and Java
○ But you must assign string indices to a character:

YES: word[1] = ‘a’; NO: word[1] = “a”;

What are the key characteristics of strings in C++?

● Strings are mutable in C++

● You can add characters to strings and strings to strings using += and +
○ Strings must use double quotes (“”) while characters use single (‘’).
○ There is a caveat you’ll see shortly

What are the key characteristics of strings in C++?

● Strings are mutable in C++

● You can add characters to strings and strings to strings using += and +
○ Strings must use double quotes (“”) while characters use single (‘’).
○ There is a caveat you’ll see shortly

● You can use logical operators to compare strings (and characters)
○ “Under-the-hood,” C++ is using the ASCII values of their first

characters to compare.

string and char
conventions
[demo]

string utility functions

Three categories of functions

● Built-in C++ char functions (<cctype> library)

● Built-in C++ string methods (<string> library)

● Stanford string library functions (“strlib.h” library)

<cctype> library
● #include <cctype>

● This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char
converted in some way (e.g., to uppercase)
○ isalnum: checks if a character is alphanumeric
○ isalpha: checks if a character is alphabetic
○ islower: checks if a character is lowercase
○ isupper: checks if a character is an uppercase character
○ isdigit: checks if a character is a digit
○ isxdigit: checks if a character is a hexadecimal character
○ iscntrl: checks if a character is a control character
○ isgraph: checks if a character is a graphical character
○ isspace: checks if a character is a space character
○ isblank: checks if a character is a blank character
○ isprint: checks if a character is a printing character
○ ispunct: checks if a character is a punctuation character
○ tolower: converts a character to lowercase
○ toupper: converts a character to uppercase

<cctype> library
● #include <cctype>

● This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char
converted in some way (e.g., to uppercase)
○ isalnum: checks if a character is alphanumeric
○ isalpha: checks if a character is alphabetic
○ islower: checks if a character is lowercase
○ isupper: checks if a character is an uppercase character
○ isdigit: checks if a character is a digit
○ isxdigit: checks if a character is a hexadecimal character
○ iscntrl: checks if a character is a control character
○ isgraph: checks if a character is a graphical character
○ isspace: checks if a character is a space character
○ isblank: checks if a character is a blank character
○ isprint: checks if a character is a printing character
○ ispunct: checks if a character is a punctuation character
○ tolower: converts a character to lowercase
○ toupper: converts a character to uppercase

char letter = 'L';

islower(letter);

//returns false

<cctype> library
● #include <cctype>

● This library provides functions that check a single char for a property (e..g, if it is a digit), or return a char
converted in some way (e.g., to uppercase)
○ isalnum: checks if a character is alphanumeric
○ isalpha: checks if a character is alphabetic
○ islower: checks if a character is lowercase
○ isupper: checks if a character is an uppercase character
○ isdigit: checks if a character is a digit
○ isxdigit: checks if a character is a hexadecimal character
○ iscntrl: checks if a character is a control character
○ isgraph: checks if a character is a graphical character
○ isspace: checks if a character is a space character
○ isblank: checks if a character is a blank character
○ isprint: checks if a character is a printing character
○ ispunct: checks if a character is a punctuation character
○ tolower: converts a character to lowercase
○ toupper: converts a character to uppercase

string methods
#include <string>

● s.append(str): add text str to the end of a string s
● s.compare(str): return -1, 0, or 1 depending on relative ordering
● s.erase(index, length): delete text from a string starting at given index
● s.find(str): return first index where the start of str appears in this string (returns

string::npos if not found)
● s.rfind(str): return last index where the start of str appears in this string (returns

string::npos if not found)
● s.insert(index, str): add text str into a string at a given index
● s.length() or s.size(): number of characters in this string
● s.replace(index, len, str): replaces len chars at index with text str
● s.substr(start, length) or s.substr(start): the next length characters

beginning at start (inclusive); if length omitted, grabs until end of string

string methods
#include <string>

● s.append(str): add text str to the end of a string s
● s.compare(str): return -1, 0, or 1 depending on relative ordering
● s.erase(index, length): delete text from a string starting at given index
● s.find(str): return first index where the start of str appears in this string (returns

string::npos if not found)
● s.rfind(str): return last index where the start of str appears in this string (returns

string::npos if not found)
● s.insert(index, str): add text str into a string at a given index
● s.length() or s.size(): number of characters in this string
● s.replace(index, len, str): replaces len chars at index with text str
● s.substr(start, length) or s.substr(start): the next length characters

beginning at start (inclusive); if length omitted, grabs until end of string

Stanford string library functions
#include “strlib.h”

● endsWith(str, suffix)

startsWith(str, prefix): returns true if the given string begins or ends with the
given suffix/prefix text

● integerToString(int)

realToString(double)

stringToInteger(str)

stringToReal(str): returns a conversion between numbers and strings
● equalsIgnoreCase(s1, s2): true if s1 and s2 have same chars, ignoring casing
● toLowerCase(str): returns a lowercase version of a string
● toUpperCase(str): returns an uppercase version of a string
● trim(str): returns string with surrounding whitespace removed

Stanford string library functions
#include “strlib.h”

● endsWith(str, suffix)

startsWith(str, prefix): returns true if the given string begins or ends with the
given suffix/prefix text

● integerToString(int)

realToString(double)

stringToInteger(str)

stringToReal(str): returns a conversion between numbers and strings
● equalsIgnoreCase(s1, s2): true if s1 and s2 have same chars, ignoring casing
● toLowerCase(str): returns a lowercase version of a string
● toUpperCase(str): returns an uppercase version of a string
● trim(str): returns string with surrounding whitespace removed

Two types of
C++ strings
[poll]

Poll: What will happen with the following line of code?

string hiThere = "hi" + "there";

You would get…

● An error
● The string “hithere” stored in hiThere
● The sum of the ASCII values of the letters in “hi” and

“there”

Poll: What will happen with the following line of code?

string hiThere = "hi" + '?'

You would get…

● An error
● The string “hi?” stored in hiThere
● “ded tests.”

Garbage value

C strings vs. C++ strings summary

● C strings have no methods
○ This is why you can’t do something like "hi".length() in C++

● Conversion fixes
○ Store the C string in a variable first to convert it to a C++ string
○ Use a conversion function

■ string("text"); converts the C string literal into a C++ string
■ string.c_str() returns a C string from a C++ string

● Takeaway: Beware the C string!

Announcements

Announcements

● Sections signups are open at cs198.stanford.edu! Make sure to submit
preferences by Sunday at 5pm PDT.

● Assignment 0 is due Monday, June 27 at 11:59pm.

● Assignment 1 will be released later today and is due next Friday, July 1 at
11:59pm PDT.
○ YEAH hours are next Monday, June 27 at 5:15pm.

● Please send us your OAE letters as soon as possible if you haven’t already.

http://cs198.stanford.edu

How do we test code in
CS106B?

Testing
Software and cathedrals are much the same – first we build them,
then we pray.
– Sam Redwine

Why is testing important?

Discuss in breakout rooms!

Why is testing important?

The hole in the ozone layer over
Antarctica remained undetected for
a long period of time because the
data analysis software used by
NASA in its project to map the
ozone layer had been designed to
ignore values that deviated greatly
from expected measurements.

Source

http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
http://earthobservatory.nasa.gov/Features/RemoteSensingAtmosphere/remote_sensing5.php
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

In 1996, a European Ariane 5 rocket
was set to deliver a payload of
satellites into Earth orbit, but problems
with the software caused the launch
rocket to veer off its path a mere 37
seconds after launch. The problem
was the result of code reuse from the
launch system’s predecessor, Ariane
4, which had very different flight
conditions from Ariane 5.

Source

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

A 2002 study commissioned by the
National Institute of Standards and
Technology (referred to here) found
that software bugs cost the U.S.
economy $59.5 billion every year
(imagine the global costs…). The
study estimated that more than a
third of that amount, $22.2 billion,
could be eliminated by improved
testing.

Source

http://tvnz.co.nz/view/news_technology_story_skin/453830?format=html
https://royal.pingdom.com/10-historical-software-bugs-with-extreme-consequences/

Why is testing important?

● Testing can save money

Why is testing important?

● Testing can save money

● Testing can save lives

Why is testing important?

● Testing can save money

● Testing can save lives

● Testing can prevent disasters

Why is testing important?

● Testing can save money

● Testing can save lives

● Testing can prevent disasters

● Testing is a programmer's responsibility.
○ You must think about ethical considerations when you

develop code that impacts people.

What are good testing strategies?

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!
○ Use your critical thinking and analysis skills to identify a diverse

range of possible ways in which your code might be used.

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

edge case
Uses of your function/program that

represent extreme situations

Definition

What are good testing strategies?

● Write tests that cover a wide variety of use cases for your function!

● Consider:
○ Basic use cases
○ Edge cases

edge case
Uses of your function/program that

represent extreme situations

Definition

For example, if your function takes in an
integer parameter, test what happens if the
value that is passed in negative, zero, a large
positive number, etc!

SimpleTest

What is SimpleTest?

● SimpleTest is a C++ library developed by some of the lecturers here at
Stanford that allows standalone, C++ unit testing

● For those of you coming from CS106A in Python, this is similar in
functionality to the doctest infrastructure that you learned

● We will see SimpleTest a lot this quarter! You will learn how to write
good, comprehensive suites of tests using this library, starting from the
very first assignment.

How does SimpleTest work?

CS106B Testing Guide
– make sure to read it!

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1218/resources/testing_guide.html

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

SELECTED_TESTS
ALL_TESTS

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

How does SimpleTest work?
main.cpp

#include "testing/SimpleTest.h"
#include "testing-examples.h"

int main()
{
 if (runSimpleTests(SELECTED_TESTS)) {
 return 0;
 }

 return 0;
}

testing-examples.cpp

#include "testing/SimpleTest.h"

int factorial (int num);

int factorial (int num) {
/* Implementation here */

}

PROVIDED_TEST("Some provided tests.") {
EXPECT_EQUAL(factorial(1), 1);
EXPECT_EQUAL(factorial(2), 2);
EXPECT_EQUAL(factorial(3), 6);
EXPECT_EQUAL(factorial(4), 24);

}

STUDENT_TEST("student wrote this test") {
// student tests go here!

}

What’s next?

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Vectors and Grids

