Recursive Fractals

What examples of recursion have
you encountered in day-to-day life?
pollev.com/cs106bpoll

N -
What's an example of recursion you've encountered in day-.

to-day life?

m Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

Life after CS106B/

recursive
problem-solving

Today’s
guestion

How can we use visual
representations to
understand recursion?

How can we use recursion
to make art?

Review

)
TOday S . Defining recursion in the
tOpiCS context of fractals

. The Cantor Set

. The Sierpinski Carpet

Review

recursion
A problem-solving technique in which tasks are
completed by reducing them into repeated, smaller
versions of themselves.

Recursion Review

e Recursion is a problem-solving technique in which tasks are completed by

reducing them into repeated, smaller tasks of the same form.
o Arecursive operation (function) is defined in terms of itself (i.e. it calls itself).

Recursion Review

e Recursion has two main parts: the base case and the recursive case.

o Base case: Simplest form of the problem that has a direct answer.
o Recursive case: The step where you break the problem into a smaller, self-similar task.

Recursion Review

e The solution will get built up as you come back up the call stack.

o The base case will define the “base” of the solution you’re building up.
o Each previous recursive call contributes a little bit to the final solution.
o The initial call to your recursive function is what will return the completely constructed answer.

Recursion Review

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

Recursion Review

e Recursion is a problem-solving technique in which tasks are completed by
reducing them into repeated, smaller tasks of the same form.

e Recursion has two main parts: the base case and the recursive case.
e The solution will get built up as you come back up the call stack.

e When solving problems recursively, look for self-similarity and think about
what information is getting stored in each stack frame.

3 Musts of Recursion

1. Your code must have a case for all valid
inputs.

2. You must have a base case.

3. When you make a recursive call it should be
to a simpler instance (forward progress
towards base case).

Example:
isPalindrome()

Write a function that returns if a string is a palindrome

A string is a palindrome if it reads the same both forwards and backwards:

(13

isPalindrome
isPalindrome
isPalindrome
isPalindrome
isPalindrome
isPalindrome
isPalindrome
isPalindrome(*”) = true

level”) » true
“racecar”) = true

step on no pets”) » true
“high”) » false

“hi”) » false
“palindrome”) = false

") » true

(13

(13

(
(
(
(
(
(
("X
(

Approaching recursive problems

e ook for self-similarity.

e Try out an example and look for patterns.
o Work through a simple example and then increase the complexity.
o Think about what information needs to be “stored” at each step in the
recursive case (like the current value of n in each factorial stack frame).

e Ask yourself:

o What is the base case? (What is the simplest case?)
o What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:
What are the base and
recursive cases?

isPalindrome()

e Look for self-similarity: racecar

isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are ‘r’

isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are ‘r’
o Check if “aceca” is a palindrome:

isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are °r’
o Check if “aceca” is a palindrome:
m Look at the first and last letters of “aceca” » both are ‘@’
m Checkif “cec” is a palindrome:

isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are °r’
o Check if “aceca” is a palindrome:
m Look at the first and last letters of “aceca” » both are ‘@’
m Checkif “cec” is a palindrome:
e Look at the first and last letters of “cec” = both are ‘c’
e Check if “e” is a palindrome:

isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are °r’
o Check if “aceca” is a palindrome:
m Look at the first and last letters of “aceca” » both are ‘@’
m Checkif “cec” is a palindrome:
e Look at the first and last letters of “cec” = both are ‘c’
e Check if “e” is a palindrome:

13 ”

® : “e” is a palindrome

isPalindrome()

e Look for self-similarity: racecar
o Look at the first and last letters of “racecar” = both are °r’
o Check if “aceca” is a palindrome:
m Look at the first and last letters of “aceca” » both are ‘@’
m Checkif “cec” is a palindrome:
e Look at the first and last letters of “cec” = both are ‘c’
e Check if “e” is a palindrome:

13 ”

® : “e” is a palindrome

What about the false case?

isPalindrome()

e Look for self-similarity: hunch

isPalindrome()

e Look for self-similarity: hunch
o Look at the first and last letters of “hunch” = both are ‘h’

isPalindrome()

e Look for self-similarity: hunch
o Look at the first and last letters of “hunch” = both are ‘h’
o Check if “unc” is a palindrome:

isPalindrome()

e Look for self-similarity: hunch
o Look at the first and last letters of “hunch” » both are ‘h’
o Check if “unc” is a palindrome:
m Look at the first and last letters of “unc” = not equal
O : Return false

isPalindrome()

e Base cases:
o isPalindrome(*”) » true
o isPalindrome(string of length 1) » true
o If the first and last letters are not equal » false

® Recursive case: If the first and last letters are equal,
isPalindrome(string) = isPalindrome(string minus first and last letters)

isPalindrome
() There can be multiple base

e Base cases: [or recurr/ve) cases!
o isPalindrome(*”) = true
o isPalindrome(string of length 1) » true
o If the first and last letters are not equal » false

® Recursive case: If the first and last letters are equal,
isPalindrome(string) = isPalindrome(string minus first and last letters)

isPalindrome()

bool isPalindrome (string s) {
if (s.length() < 2) {
return true;
} else {
if (s[0] !'= s[s.length() - 1]) {
return false;

}

return isPalindrome (s.substr(l, s.length() - 2));

}

isPalindrome() in action

int main() {
cout << boolalpha <<
isPalindrome (“racecar”)
<< noboolalpha << endl;
return O;

isPalindrome() in action

int main() {
cout << boolalpha <<
isPalindrome (“racecar”)
<< noboolalpha << endl;
return O;

isPalindrome() in action

int main() {
bool isPalindrome (string s) ({ —
if (s.length() < 2 « ”
(gth ()) A racecar .

return true;
S

} } else {
if (s[O0]
return false;

string

I= s[s.length() - 1]) {

}
return isPalindrome (s.substr (1, s.length() - 2));

isPalindrome() in action

int main() {
bool isPalindrome (string s) { —
if (s.length() < 2 « ”
(gt)) 1 racecar .

return true;
S

} } else {
if (s[O0]
return false;

string

I= s[s.length() - 1]) {

}
return isPalindrome (s.substr (1, s.length() - 2));

isPalindrome() in action

int main() {
bool isPalindrome (string s) ({ —
if (s.length() < 2 « ”
(gth ()) A racecar .

return true;
S

} } else {
1f (s[O0]
return false;

string

I= s[s.length() - 1]) {

}
return isPalindrome (s.substr (1, s.length() - 2));

isPalindrome() in action

int main() {
bool isPalindrome (string s) ({ —
if (s.length() < 2 « ”
(gth ()) A racecar .

return true;
S

} } else {
if (s[O0]
return false;

string

I= s[s.length() - 1]) {

}
return isPalindrome (s.substr (1, s.length() - 2));

isPalindrome() in action

int main() {
bool isPalindrome (string s) ({ —
if (s.length() < 2 « ”
(gth ()) A racecar .

return true;
S

} } else {
if (s[O0]
return false;

string

I= s[s.length() - 1]) {

}
return isPalindrome (s.substr (1, s.length() - 2));

isPalindrome() in action

int main() {
bool isPalindrome (string s) {
bool isPalindrome (string s) {
if (s.length < 2 oy
} (s-length() < 2) | aceca
return true; »
} else {
if (s[0] !'= s[s.length() - 1]) {
return false;
}
} return isPalindrome (s.substr (1, s.length() - 2))

isPalindrome() in action

int main() {
bool isPalindrome (string s) {
bool isPalindrome (string s) {
if (s.length < 2 oy
} (s-length() < 2) | aceca
return true; »
} else {
if (s[0] !'= s[s.length() - 1]) {
return false;
}
} return isPalindrome (s.substr (1, s.length() - 2))

isPalindrome() in action

int main() {
bool isPalindrome (string s) { ‘E_-
bool isPalindrome (string s) { ‘E_-

} bool isPalindrome (string s) { [—
if (s.length() < 2) { “cec” .
S

return true;

string

} else {
if (s[0] !'= s[s.length() - 1]) {
} return false;
}
- 2));

return isPalindrome (s.substr(l, s.length()

isPalindrome() in action

int main() {
bool isPalindrome (string s) { ‘E_-
bool isPalindrome (string s) { ‘E_-

} bool isPalindrome (string s) { [—
if (s.length() < 2) { “cec” .
S

return true;

string

} else {
if (s[0] !'= s[s.length() - 1]) {
} return false;
}
- 2));

return i1sPalindrome (s.substr(l, s.length()

isPalindrome() in action

int main() {

bool isPalindrome (string s) { ‘E_-
bool isPalindrome (string s) { ‘E_-
bool isPalindrome (string s) { ‘E_-

}
bool isPalindrome (string s) {
if (s.length() < 2) { .
S

return true;

string

} } else {
if (s[0] !'= s[s.length() - 1]) {
return false;

s.length() - 2));

}
}

return isPalindrome (s.substr(1,

isPalindrome() in action

int main() {

bool isPalindrome (string s) { ‘E_-
bool isPalindrome (string s) { ‘E_-
bool isPalindrome (string s) { ‘E_-

}
bool isPalindrome (string s) {
if (s.length() < 2) { .
S

return true;

string

} } else {
if (s[0] !'= s[s.length() - 1]) {
return false;

s.length() - 2));

}
}

return isPalindrome (s.substr(1,

isPalindrome() in action

int main() {

bool isPalindrome (string s) {

P

o sinmnlls =

P

bool isPalindrome (string s) {

o sinmnlls =

bool isPalindrome (string s) {

if (s.length() < 2) {
return true;

} else {

if (s[O0]
return false;

}
}

= s[s.length()

return i1sPalindrome (s.substr(l, s.length()

string

I
S

- 11) |

- 2));

true

isPalindrome() in action

int main() {
bool isPalindrome (string s) {
bool isPalindrome (string s) {
if (s.length < 2 oy
} (s-length() < 2) | aceca
return true; »
} else {
if (s[0] !'= s[s.length() - 1]) {
return false;
}
} return isPalindrome (s.substr (1, s.length() - 2))
true

isPalindrome() in action

int main() {
bool isPalindrome (string s) ({ —
if (s.length() < 2 « ”
(gth ()) A racecar .

return true;
S

} } else {
if (s[O0]
return false;

string

I= s[s.length() - 1]) {

}
return isPalindrome (s.substr (1, s.length() - 2));
true

isPalindrome() in action

int main() {
cout << boolalpha << ,
isPalindrome (“racecar”) /Dkl N fg t rue ./
<< noboolalpha << endl;
return O;

How can we use visual
representations to understand
recursion?

Self-Similarity

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains &5
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains

a smaller copy of itself.

Oval
Window

Round

Window
Scala
Tympani

Tectorial
Membrane

https://news.mit.edu/2009/bio-electronics-0603

Self-Similarity

e Solving problems recursively and
analyzing recursive phenomena
involves identifying

e An objectis if it contains
a smaller copy of itself.

Self-cimifarity chows up in many real-world
obfects and phenomena, and is the key to
truly understanding their formation and

existence.

Graphical
Representations of
Recursion

Graphical Representations of Recursion

e Our first exposure to recursion

yesterday was graphical in nature!
o "Vee"is a recursive program that traces
the path of a sprite in Scratch
o The sprite draws out a funky tree-like
structure as it goes along its merry way

Graphical Representations of Recursion

e Our first exposure to recursion

yesterday was graphical in nature!

o "Vee"is a recursive program that traces
the path of a sprite in Scratch

o The sprite draws out a funky tree-like
structure as it goes along its merry way

e Graphical representations of
recursion allow us to visualize the
result of having

o Understanding this "branching" of the
tree is critical to solving challenging
problems with recursion

Recursive Ray Tracing

https://stackoverflow.com/questions/40308953/improper-reflection-in-recursive-ray-tracer
http://algorithmicbotany.org/papers/abop/abop.pdf

‘}) LVE

Simulating the Universe on a Supercomputer

Unlisted

2 watching now - Started streaming 14 minutes ago i 30

KIPAC

1.18K subscribers

CJ DISLIKE

/~> SHARE

D;wr‘vrut by 200 o
Ld

8¢ cLip

=+ SAVE [2

SUBSCRIBE

https://www.youtube.com/watch?v=sz9XwHBfdCw

Fractals

Fractals

o A is any repeated, graphical pattern.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :

arranged in a structured way.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :

arranged in a structured way.

Fractals

o A is any repeated, graphical pattern.

e A fractal is composed of :

arranged in a structured way.

Understanding Fractal
Structure

What differentiates the smaller tree from

the bigger one?

What differentiates the smaller tree from
the bigger one?
1. It's at a different

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

&7

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

{_/\ i

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different . the overall structure.

An order-0 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2. It has a different) called the , which
3. It has a different) indicates the complexity of
4. It has a different) the overall structure.

An order-1 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-2 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-3 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-4 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

What differentiates the smaller tree from

the bigger one?

1.

2.
3.
4.

It's at a different
It has a different
It has a different
It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

An order-3 tree

What differentiates the smaller tree from Fractals and self-similar

the bigger one? structures are often defined
1. It's at a different . in terms of some parameter
2 It has a different) called the , Which
3. It has a different . indicates the complexity of
4. It has a different) the overall structure.

An order-3 tree

An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order- (n-1) trees starting
at the end of that line.

What differentiates the smaller tree from
the bigger one?

1. It's at a different

2. It has a different

3. It has a different

4. It has a different

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

An order-4 tree?

An order-0 tree is nothing at all.
An order-n tree is a line with two

smaller order- (n-1) trees starting \’ =~
at the end of that line.

What differentiates the smaller tree from

the bigger one?

1.

2.
3.
4.

It's at a different
It has a different
It has a different
It has a different

P
1\

v T
\

-~

" -

/ \

Fractals and self-similar
structures are often defined
in terms of some parameter
called the , which
indicates the complexity of
the overall structure.

We drew thic
recurcively

Each recursive call just draws
one branch. The cum total of all

the recursive caflls draws the

whole tree.

Announcements

Announcements

e Make sure to check out our on Ed — there's lot of
important info contained there!

e Assignment 1 Feedback is out today! Revisions are due Sunday, July 10, at
11:59pm PDT.

e The Midterm will be administered next Monday during lecture.
o Read this entire info
o Things to note: practice exam (format, length); practice problems
o Things to note: today is the last day of content that will be covered on the
midterm. Tomorrow’s content will appear as an extra credit problem.

https://edstem.org/us/courses/22400/discussion/1613583
https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1228/assessments/1-midterm/

How can we use recursion to
make art?

C++ Stanford
graphics library

Graphics in CS106B

e Creating graphical programs is not one of our main focuses in this class, but a
brief crash course in working with graphical programs is necessary to be able
to code up some fractals of our own.

e The Stanford C++ libraries provide extensive capabilities to create custom
graphical programs. The full documentation of these capabilities can be found
in the

e We will abstract away almost all of the complexity for you via provided helper

functions.
o There are two main classes/components of the library you need to know: and

https://cs.stanford.edu/people/eroberts/StanfordCPPLib/doc/

GWindow

e A GWindow is an abstraction for the

graphical window upon which we
will do all of our drawing.

increasing x

GWindow (0 O

e A GWindow is an abstraction for the
graphical window upon which we will
do all of our drawing.

e The window defines a coordinate

system of x-y values
o The top left corneris (0, 0)
o The bottom right corner is
(windowWidth-1, windowHeight-1)

increasing y

increasing x

GWindow (0 O

: , (200,100)
e A GWindow is an abstraction for the

graphical window upon which we will
do all of our drawing.
e The window defines a coordinate

system of x-y values
o The top left corneris (0, 0)
o The bottom right corner is
(windowWidth-1, windowHeight-1)

e Alllines and shapes drawn on the
window are defined by their (x,y)
coordinates

(400,250)

increasing y

v
D

increasing x

GPOint (0’0)_I

e A GPoint is a handy way to bundle up
the x-y coordinates for a specific point ‘GPoint (x,y)
in the window.

o Very similar in functionality to the
GridLocation struct we learned about
before!

increasing y

increasing x

.
[] (OIO)
GPoint O ———————————
_ ' (200,100)
e A GPoint is a handy way to bundle up
the x-y coordinates for a specific point
in the window. ®
idpoint
o Very similar in functionality to the > EEPess
GridLocation struct we learned about ,g o
before! o (400,250)
3]
C

GPoint topLeft (200, 100);
GPoint bottomRight (400, 250);
drawFilledRect (topLeft, bottomRight) ;

GPoint midpoint = {

(topLeft.x + bottomRight.x)/ 2,
(topLeft.y + bottomRight.y)/ 2 }; \j

Cantor Set example

Cantor Set : = il : I-I i1l
[I 1 [[1]

e The first fractal we will code is called the "Cantor" fractal, named after the
late-19th century German mathematician Georg Cantor.

e The Cantor fractal is a set of lines where there is one main line, and below that
there are two other lines: each 5 of the width of the original line, with one on
the left and one on the right (with a '3 separation of whitespace between them)

® Below each of the other lines is an identical situation: two Y3 lines.

e This repeats until the lines are no longer visible.

An order-0 Cantor Set

An order-1 Cantor Set

An order-2 Cantor Set

An order-6 Cantor Set

An order-6 Cantor Set

Another Cantor Set

An order-6 Cantor Set

Another Cantor Set

Alco a Cantor Set

How to draw an order-n Cantor Set

GPoint start GPoint end
s 002000 -
S)] S

How to draw an order-n Cantor Set

1. Draw a line from start to end.

GPoint start GPoint end
s 002000 -
S)] S

How to draw an order-n Cantor Set

1. Draw a line from start to end.

GPoint start GPoint end
& &] S

f | \

2. Underneath the left
third, draw a Cantor
Set of order-(n - 1).

How to draw an order-n Cantor Set

1. Draw a line from start to end.

GPoint start GPoint end
L @&
@ & & B
2. Underneath the left 3. Underneath the right
third, draw a Cantor third, draw a Cantor
Set of order-(n - 1). Set of order-(n - 1).

How to draw an order-n Cantor Set

order == 0
1. Draw a line from start to end.
GPoint start GPoint end
L =
] = @ B
2. Underneath the left 3. Underneath the right
third, draw a Cantor third, draw a Cantor
Set of order-(n - 1). Set of order-(n - 1).

Pseudocode exercise

drawCantor (, , ,) |
// Base case
if ’

//Recursive case
step 1:

step 2:

step 3:

Attendance ticket:
https://tinyurl.com/drawcantor

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/drawcantor

Cantor Set demo

[Qt Creator]

—
void drawCantor(GWindow &w, int level, GPoint left, GPoint right) {
// Base case: simplest possible version of the problem (nothing!)
1f (level == 0) {
return;

}

pause(500); // for animated effect

// step 1: draw the line
drawThickLine(w, left, right);

// step 2: draw the left cantor fractal
GPoint oneThird = pointBetween(left, right, / 3):
drawCantor(w, level - 1, getLoweredPoint(left), getLoweredPoint(oneThird));

// step 3: draw the right cantor fractal
GPoint twoThird = pointBetween(left, right, 78
drawCantor(w, level - 1, getLoweredPoint(twoThird), getLoweredPoint(right));

*/
void drawCantor(GWindow &v, int order, GPoint left, GPoint right) {
/* TODO: Implement the Cantor Set drawing function. */
/* Base case: order == @, do nothing at all
* Recursive case:
* 1. Draw a main line from start to end
* 2. Draw an order n-1 cantor set on the left third
* 3. Draw an order n-1 cantor set on the right third
*/
} I

-+
)
0]
o
-+
C
(©
O
QO
L
-+
G
@)
C
O

Icat

world appli

Real

n=6, narrowed stars, radial repeating, mosaic w/color by level

n=8, scaled rosettes, radial inward, interlace w/equal band width

Source:

n=10, scaled rosettes, radial combined, outline w/variable band width

ST

4
»rr;
X

Wy

o

3:'&
¢
AT

2

W
S x
A) X

n=12, scaled extended rosettes, radial outward, mosaic 2-color

https://www.semanticscholar.org/paper/Fractal-Islamic-Geometric-Patterns-Based-on-of-%7B-n-Webster/290bfbe1dcf919ac037c63ddc46b954413a54200

a- Fractal Stare shape
with one iteration.

Initial shape 1* iteration

b-Sierpinsky ftriangle with
one iteration.

Initial shape 1* jteration

c- Hybrid fractal shape with
one iteration.

Hybrid Initial 1* iteration
Fuape e- Fractal geometric shape with two iterations

d- Fractal square shape with two iterations /\ /\ /\

| J
Initial I*iteration 2% iteration Initial shape 14 jteration 204 jteration
shape
Figurel : Umayyed Islamic fractal shapes.
Source: https://fractalpattern.wordpress.com/2011/07/25/islamicgeometricpattern-origi

Source: Fractal shapes in Islamic design

https://mjaf.journals.ekb.eg/article_117382_49463ddcefb3d6db1f531c0c26c8af12.pdf

-

y

CRIEIC'S PICK

ashaad Ne

Higggrotean “Assembly;” at the |
ology, performance, wo
ill teach you how to vo

-,

| L Y
- \ NN

"

Source:

https://www.nytimes.com/2022/02/24/arts/rashaad-newsome-assembly-exhibit.html
https://mobile.twitter.com/roneglash

......

3rd order segments

2nd order segments

1st order segments

single-lines transformation

Source: Chinese ice-ray lattice geometry

NRY AV AVA
PRIZARY
SO

traditional cracked-ice

lattice

https://www.sciencedirect.com/science/article/pii/S2095263521000844

Sierpinski Carpet
example

Sierpinski Carpet

e First described by Wactaw
Sierpinski in 1916

e A generalization of the Cantor Set
to two dimensions!

e Defined by the subdivision of a
shape (a square in this case) into

smaller copies of itself.
o The same pattern applied to a triangle
yields a Sierpinski triangle, which you
will code up on the next assignment.

An order-0 Sierpinski Carpet

An order-1 Sierpinski Carpet

An order-1 carpet is
subdivided into
eight order-0
carpets arranged in
this grid pattern

An order-2 Sierpinski Carpet

An order-2 Sierpinski Carpet

Sierpinski Carpet Formalized

e Base Case (order-0)

o Draw a filled square at the
appropriate location

Sierpinski Carpet Formalized

e Base Case (order-0)
o Draw a filled square at the
appropriate location
® Recursive Case (order-n, n # Q)

o Draw 8 order n-1 Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location

Sierpinski Carpet Formalized

e Base Case (order-0)

o Draw a filled square at the (091) (0,2)
appropriate location

® Recursive Case (order-n, n # Q)

o Draw 8 order n-1 Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location

(2,1) (2,2)

Sierpinski Carpet Formalized

e Base Case (order-0)

o Draw a filled square at the (091) (0,2)
appropriate location

® Recursive Case (order-n, n # Q)
o Draw 8 order n-1 Sierpinski
carpets, arranged in a 3x3 grid,
omitting the center location
m i.e. Draw an n-1fractal at
(0,0), draw an n-1 fractal at
(0,1), draw an n-1fractal at (21))
(0,2)...

Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):
if (order == 0)
drawFilledSquare(x, y, BASE SIZE)
else
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX (x, vy,
drawSierpinskiCarpet (newX(x, vy,
drawSierpinskiCarpet (newX(x, vy,

0), order -1)
1), order -1)
2) , order -1)
0), order -1)
2) , order -1)
0), order -1)
1), order -1)
2) , order -1)

0), new¥(x, vy,
1), newY¥(x, vy,
2), newY¥(x, vy,
0), new¥(x, vy,
2), newY¥(x, vy,
0), new¥(x, vy,
1), newY¥(x, vy,
2), newY¥(x, vy,

~
~

~
~

~
~

~
~

~
~

~
~

NMNdMNMNMNRP PR OOO
NMNdMNMNMNRPPREPROOO

~
~

Sierpinski Carpet Pseudocode (Take 1)

drawSierpinskiCarpet (x, y, order):

if (order == 0)
drawFilledS

else 0 ° J
drawSierpin TAIS’ lg“ t Very , 0, 0), order -1)
drawSierpin , 0, 1), order -1)
drawSierpin , 0, 2), order -1)
drawSierpin Pre#y’ ca” We do , 1, 0), order -1)
drawSierpin , 1, 2), order -1)
drawSierpin , 2, 0), order -1)
drawSierpin é tf ? , 2, 1), order -1)
drawSierpin e ek’ , 2, 2), order -1)

Sierpinski Carpet Pseudocode (Take 2)

drawSierpinskiCarpet (x, y, order):

if (order == 0)
drawFilledSquare(x, y, BASE SIZE)
else
for row = 0 to row = 2:
for col = 0 to col = 2:
if (col '=1 || row '= 1):

X i = newX(x, y, row, col)
y i = newY¥(x ,y, row, col)
drawSierpinskiCarpet(x i, y i, order

lteration + Recursion

e [t's completely reasonable to mix iteration and recursion in the same function.

e Here, we're firing off eight recursive calls, and the easiest way to do that is with
a double for loop.

® Recursion doesn’t mean “the absence of iteration.” It just means “solving a
problem by solving smaller copies of that same problem.”

e Iteration and recursion can be very powerful in combination!

Revisiting the Towers
of Hanoi

Pseudocode for 3 disks
3 DISKS
| (1 | I |
A B C A B C
@ (3) (@
-
A B C -T_+ C A +_+-
(5) (6))]
A B C A B C A B C
(1) Move disk 1to destination (5) Move disk 1to source
(2) Move disk 2 to auxiliary (6) Move disk 2 to destination
(3) Move disk 1to auxiliary (7) Move disk 1to destination
(

4) Move disk 3 to destination

Homework before tomorrow’s lecture

e Play Towers of Hanoi:

e Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

e Extra challenge (optional): How would you define this problem

recursively?

o Don’t worry about data structures here. Assume we have a function moveDisk (X, Y)
that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html

Fun Generative Art Links

Take ARTSTUDI 163: “Drawing with Code”
/

https://p5js.org/
https://processing.org/
https://www.youtube.com/playlist?list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA
https://rashaadnewsome.com/about/
https://csdt.org/culture/africanfractals/science.html
http://recursivedrawing.com/

What’s next?

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

Diagnostic

agoﬂm

testing analysis

Advanced Recursion Examples

! 7<14
Move this tower.. .To this spindle, l .
TRé ﬁ :
.
L ol :

Time
C O(log n)

