

Recursive Fractals

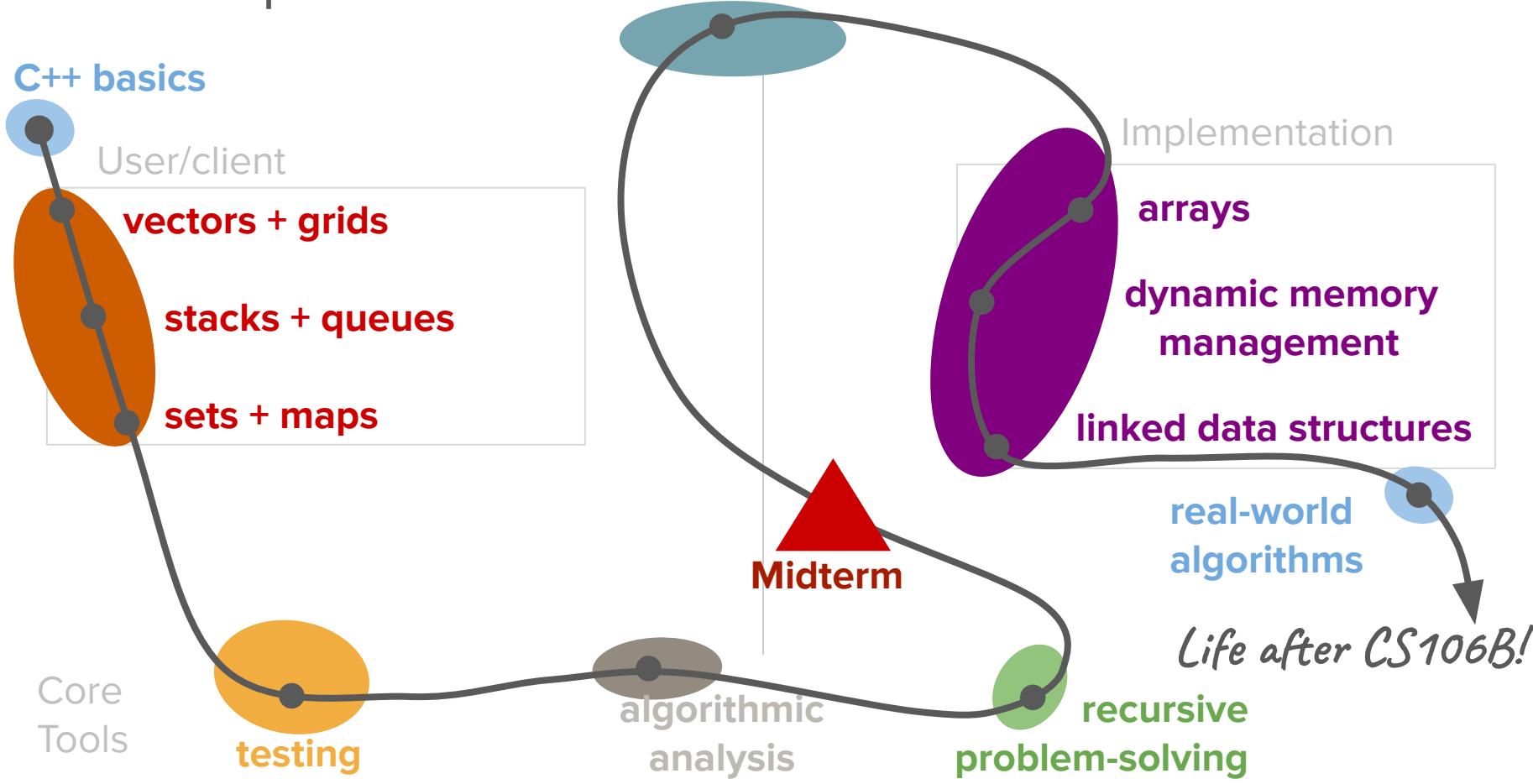
What examples of recursion have you encountered in day-to-day life?

pollev.com/cs106bpoll

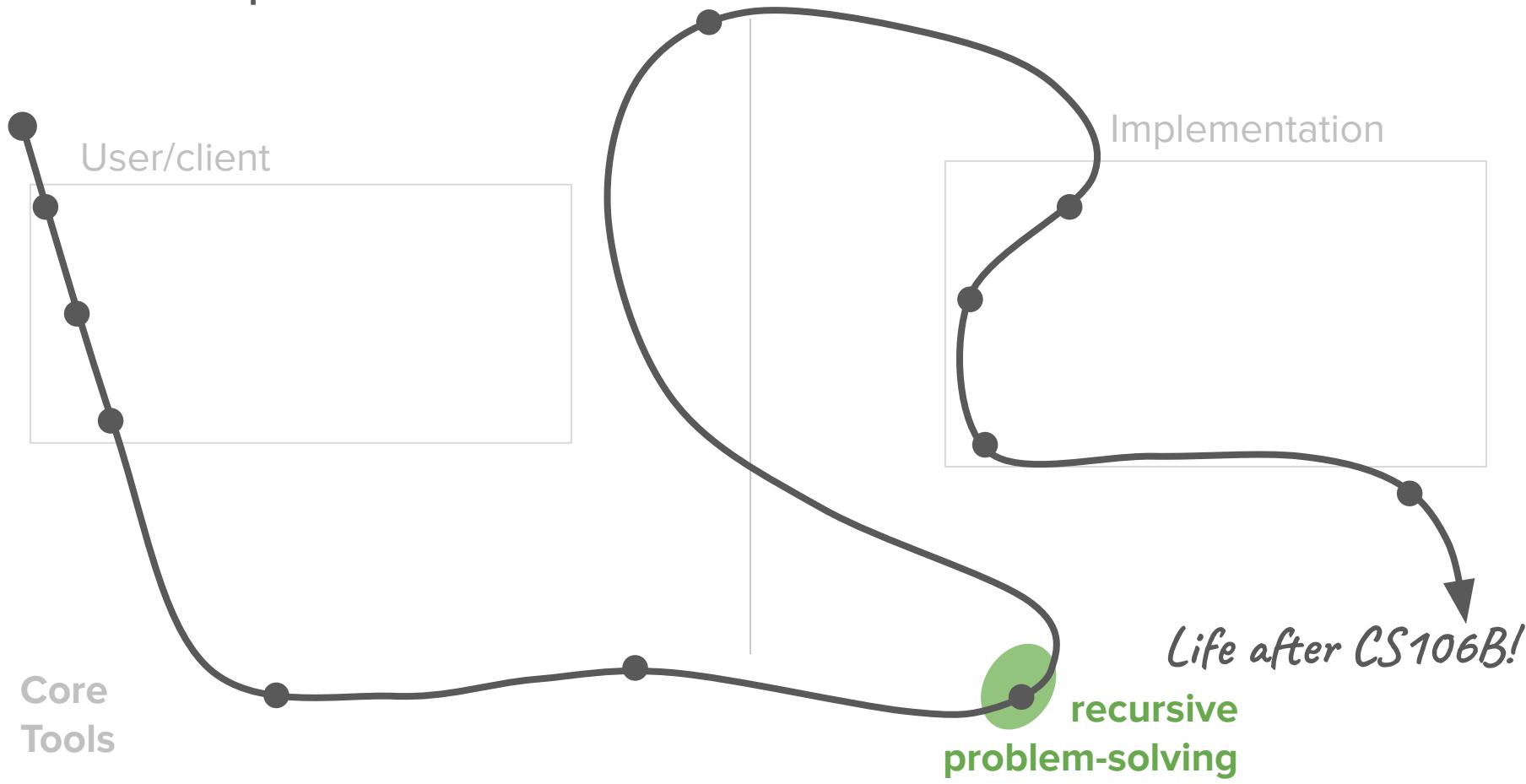
What's an example of recursion you've encountered in day-to-day life?

Roadmap

Object-Oriented Programming



Roadmap



Today's question

How can we use visual
representations to
understand recursion?

How can we use recursion
to make art?

Today's topics

1. Review
2. Defining recursion in the context of fractals
3. The Cantor Set
4. The Sierpinski Carpet

Review

Definition

recursion

A problem-solving technique in which tasks are completed by reducing them into repeated, smaller versions of themselves.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into **repeated, smaller tasks of the same form**.
 - A recursive operation (function) is defined in terms of itself (i.e. it calls itself).

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into **repeated, smaller tasks of the same form**.
- Recursion has two main parts: the **base case** and the **recursive case**.
 - Base case: Simplest form of the problem that has a direct answer.
 - Recursive case: The step where you break the problem into a smaller, self-similar task.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into **repeated, smaller tasks of the same form**.
- Recursion has two main parts: the **base case** and the **recursive case**.
- The solution will get built up **as you come back up the call stack**.
 - The base case will define the “base” of the solution you’re building up.
 - Each previous recursive call contributes a little bit to the final solution.
 - The initial call to your recursive function is what will return the completely constructed answer.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into **repeated, smaller tasks of the same form**.
- Recursion has two main parts: the **base case** and the **recursive case**.
- The solution will get built up **as you come back up the call stack**.
- When solving problems recursively, look for **self-similarity** and think about **what information is getting stored in each stack frame**.

Recursion Review

- Recursion is a problem-solving technique in which tasks are completed by reducing them into **repeated, smaller tasks of the same form**.
- Recursion has two main parts: the **base case** and the **recursive case**.
- The solution will get built up **as you come back up the call stack**.
- When solving problems recursively, look for **self-similarity** and think about **what information is getting stored in each stack frame**.

3 Musts of Recursion

1. Your code must have a case for all valid inputs.
2. You must have a base case.
3. When you make a recursive call it should be to a simpler instance (forward progress towards base case).

Example:

isPalindrome()

Write a function that returns if a string is a palindrome

A string is a palindrome if it reads the same both forwards and backwards:

- isPalindrome("level") → true
- isPalindrome("racecar") → true
- isPalindrome("step on no pets") → true
- isPalindrome("high") → false
- isPalindrome("hi") → false
- isPalindrome("palindrome") → false
- isPalindrome("X") → true
- isPalindrome("") → true

Approaching recursive problems

- Look for self-similarity.
- Try out an example and look for patterns.
 - Work through a simple example and then increase the complexity.
 - Think about what information needs to be “stored” at each step in the recursive case (like the current value of **n** in each **factorial** stack frame).
- Ask yourself:
 - What is the base case? (What is the simplest case?)
 - What is the recursive case? (What pattern of self-similarity do you see?)

Discuss:

What are the base and
recursive cases?

isPalindrome()

- Look for self-similarity: **racecar**

isPalindrome()

- Look for self-similarity: **racecar**
 - Look at the first and last letters of “racecar” → both are ‘r’

isPalindrome()

- Look for self-similarity: **racecar**
 - Look at the first and last letters of “racecar” → both are ‘r’
 - Check if “aceca” is a palindrome:

isPalindrome()

- Look for self-similarity: **racecar**
 - Look at the first and last letters of “racecar” → both are ‘r’
 - Check if “aceca” is a palindrome:
 - Look at the first and last letters of “aceca” → both are ‘a’
 - Check if “cec” is a palindrome:

isPalindrome()

- Look for self-similarity: **racecar**
 - Look at the first and last letters of “racecar” → both are ‘r’
 - Check if “aceca” is a palindrome:
 - Look at the first and last letters of “aceca” → both are ‘a’
 - Check if “cec” is a palindrome:
 - Look at the first and last letters of “cec” → both are ‘c’
 - Check if “e” is a palindrome:

isPalindrome()

- Look for self-similarity: **racecar**
 - Look at the first and last letters of “racecar” → both are ‘r’
 - Check if “aceca” is a palindrome:
 - Look at the first and last letters of “aceca” → both are ‘a’
 - Check if “cec” is a palindrome:
 - Look at the first and last letters of “cec” → both are ‘c’
 - Check if “e” is a palindrome:
 - **Base case:** “e” is a palindrome

isPalindrome()

- Look for self-similarity: **racecar**
 - Look at the first and last letters of “racecar” → both are ‘r’
 - Check if “aceca” is a palindrome:
 - Look at the first and last letters of “aceca” → both are ‘a’
 - Check if “cec” is a palindrome:
 - Look at the first and last letters of “cec” → both are ‘c’
 - Check if “e” is a palindrome:
 - **Base case:** “e” is a palindrome

*What about the **false** case?*

isPalindrome()

- Look for self-similarity: **hunch**

isPalindrome()

- Look for self-similarity: **hunch**
 - Look at the first and last letters of “hunch” → both are ‘h’

isPalindrome()

- Look for self-similarity: **hunch**
 - Look at the first and last letters of “hunch” → both are ‘h’
 - Check if “unc” is a palindrome:

isPalindrome()

- Look for self-similarity: **hunch**
 - Look at the first and last letters of “hunch” → both are ‘h’
 - Check if “unc” is a palindrome:
 - Look at the first and last letters of “unc” → not equal
 - **Base case:** Return **false**

isPalindrome()

- **Base cases:**
 - $\text{isPalindrome}("") \rightarrow \text{true}$
 - $\text{isPalindrome}(\text{string of length 1}) \rightarrow \text{true}$
 - If the first and last letters are not equal $\rightarrow \text{false}$
- **Recursive case:** If the first and last letters are equal,
 $\text{isPalindrome}(\text{string}) = \text{isPalindrome}(\text{string minus first and last letters})$

isPalindrome()

- **Base cases:**
 - $\text{isPalindrome}("") \rightarrow \text{true}$
 - $\text{isPalindrome}(\text{string of length 1}) \rightarrow \text{true}$
 - If the first and last letters are not equal $\rightarrow \text{false}$
- **Recursive case:** If the first and last letters are equal,
 $\text{isPalindrome}(\text{string}) = \text{isPalindrome}(\text{string minus first and last letters})$

*There can be multiple base
(or recursive) cases!*

isPalindrome()

```
bool isPalindrome (string s) {  
    if (s.length() < 2) {  
        return true;  
    } else {  
        if (s[0] != s[s.length() - 1]) {  
            return false;  
        }  
        return isPalindrome(s.substr(1, s.length() - 2));  
    }  
}
```

isPalindrome() in action

```
int main() {
    cout << boolalpha <<
        isPalindrome("racecar")
        << noboolalpha << endl;
    return 0;
}
```

isPalindrome() in action

```
int main() {
    cout << boolalpha <<
        isPalindrome("racecar")
        << noboolalpha << endl;
    return 0;
}
```

isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```


isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```


isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```


isPalindrome() in action

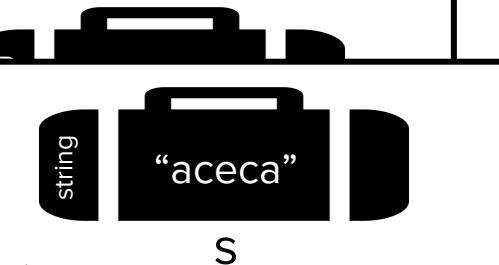
```
int main() {  
  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```


isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```


isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        // Implementation details  
  
        bool isPalindrome (string s) {  
            if (s.length() < 2) {  
                return true;  
            } else {  
                if (s[0] != s[s.length() - 1]) {  
                    return false;  
                }  
                return isPalindrome(s.substr(1, s.length() - 2));  
            }  
        }  
    }  
}
```

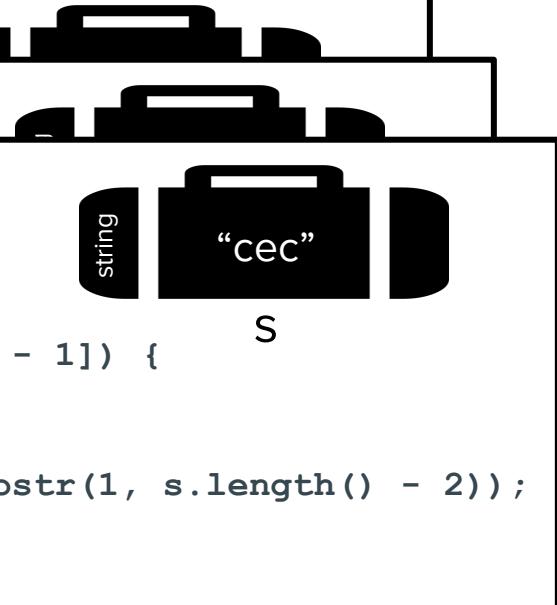


isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        // Implementation details  
  
        bool isPalindrome (string s) {  
            if (s.length() < 2) {  
                return true;  
            } else {  
                if (s[0] != s[s.length() - 1]) {  
                    return false;  
                }  
                return isPalindrome(s.substr(1, s.length() - 2));  
            }  
        }  
    }  
}
```


isPalindrome() in action

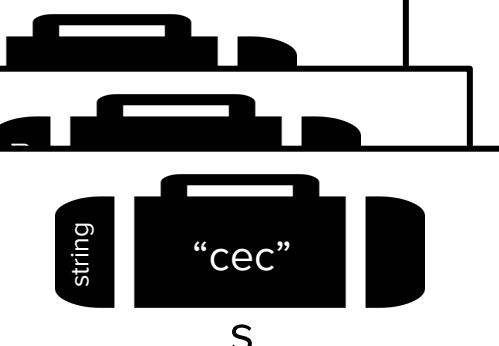
```
int main() {  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```



The diagram illustrates the state of the variable `s` during the recursive call. It shows a stack of three black rectangular blocks. The top block is labeled "string" and the middle block contains the string "cec". To the right of the stack, the variable `s` is labeled. The bottom block is partially visible.

isPalindrome() in action

```
int main() {  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```



The diagram illustrates the state of the variable `s` during the recursive call. It shows a stack of three black rectangular blocks. The top block is labeled "string" and the middle block is labeled "cec". To the right of the stack is the variable name `s`. The bottom block is partially visible. The code line `return isPalindrome(s.substr(1, s.length() - 2));` is highlighted with an orange border.

isPalindrome() in action

```
int main() {  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```

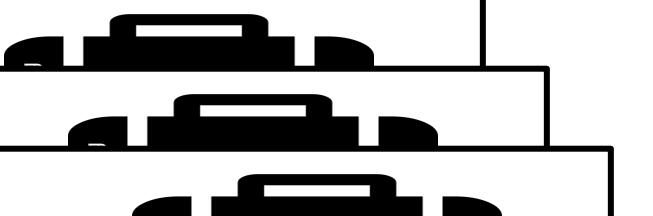
string

“e”

S

isPalindrome() in action

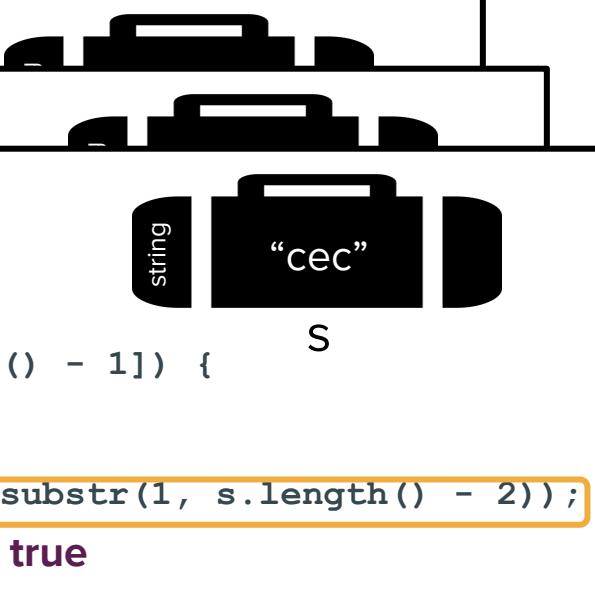
```
int main() {  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```



The diagram illustrates the state of the recursive call. On the left, a stack of three rectangles represents the call stack. The bottom rectangle contains the code for the recursive call. To its right is a black suitcase labeled 'S' containing the character 'e'. To the left of the suitcase is a small black suitcase labeled 'string'.

isPalindrome() in action

```
int main() {  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```



isPalindrome() in action

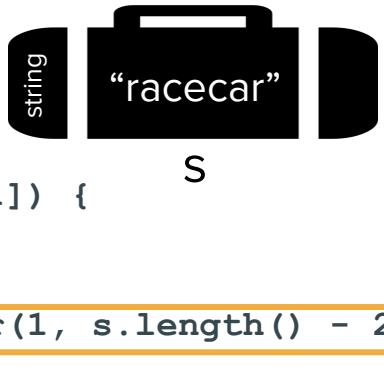
```
int main() {  
  
    bool isPalindrome (string s) {  
        // Implementation details  
  
        bool isPalindrome (string s) {  
            if (s.length() < 2) {  
                return true;  
            } else {  
                if (s[0] != s[s.length() - 1]) {  
                    return false;  
                }  
                return isPalindrome(s.substr(1, s.length() - 2));  
            }  
        }  
    }  
}
```


string "aceca" S

true

isPalindrome() in action

```
int main() {  
  
    bool isPalindrome (string s) {  
        if (s.length() < 2) {  
            return true;  
        } else {  
            if (s[0] != s[s.length() - 1]) {  
                return false;  
            }  
            return isPalindrome(s.substr(1, s.length() - 2));  
        }  
    }  
}
```



string "racecar" S

true

isPalindrome() in action

```
int main() {  
    cout << boolalpha <<  
        isPalindrome("racecar")  
        << noboolalpha << endl;  
    return 0;  
}
```

Prints true!

How can we use visual
representations to understand
recursion?

Self-Similarity

Self-Similarity

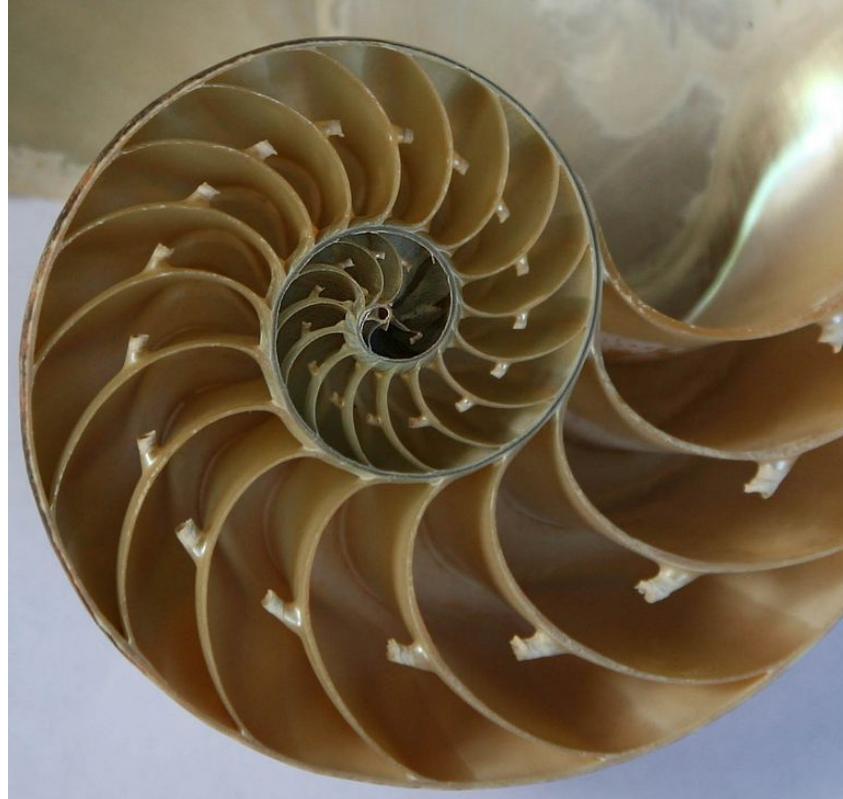
- Solving problems recursively and analyzing recursive phenomena involves identifying **self-similarity**
- An object is **self-similar** if it contains a smaller copy of itself.

Self-Similarity

- Solving problems recursively and analyzing recursive phenomena involves identifying **self-similarity**
- An object is **self-similar** if it contains a smaller copy of itself.

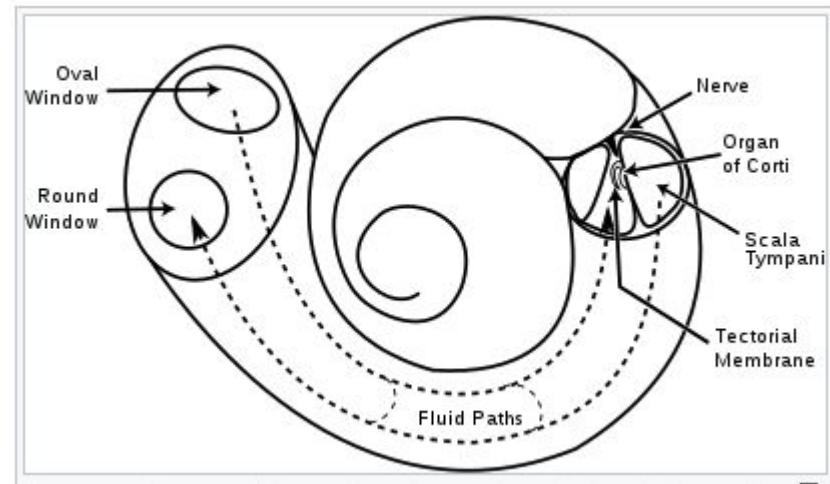
Self-Similarity

- Solving problems recursively and analyzing recursive phenomena involves identifying **self-similarity**
- An object is **self-similar** if it contains a smaller copy of itself.



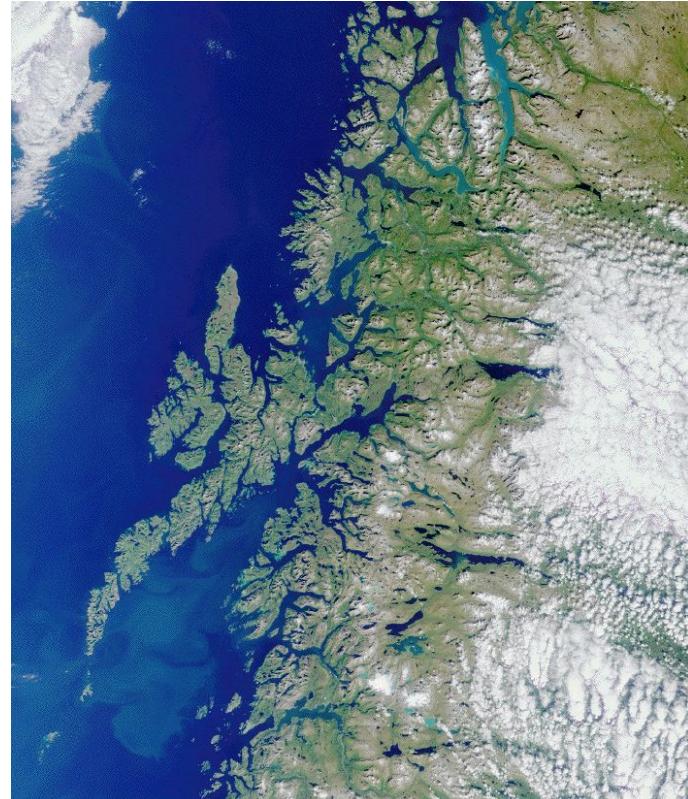
Self-Similarity

- Solving problems recursively and analyzing recursive phenomena involves identifying **self-similarity**
- An object is **self-similar** if it contains a smaller copy of itself.



Self-Similarity

- Solving problems recursively and analyzing recursive phenomena involves identifying **self-similarity**
- An object is **self-similar** if it contains a smaller copy of itself.

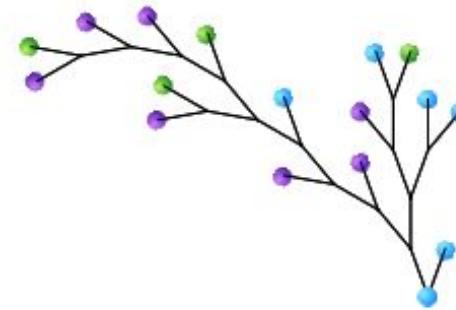
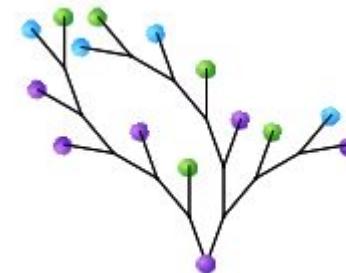


Self-similarity shows up in many real-world objects and phenomena, and is the key to truly understanding their formation and existence.

Graphical Representations of Recursion

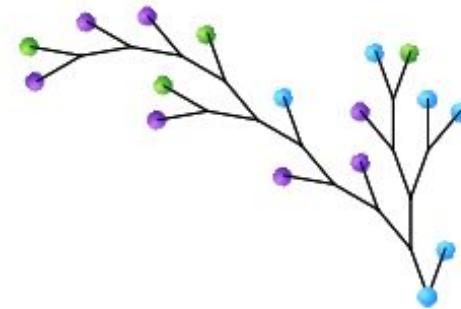
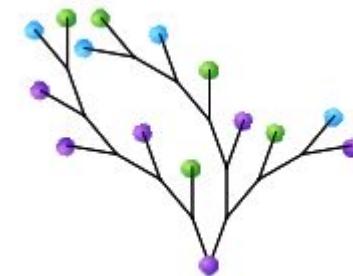
Graphical Representations of Recursion

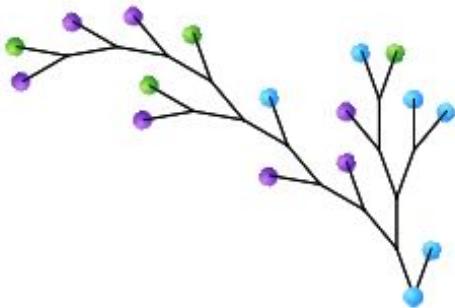
- Our first exposure to recursion
yesterday was graphical in nature!
 - "Vee" is a recursive program that traces the path of a sprite in Scratch
 - The sprite draws out a funky tree-like structure as it goes along its merry way

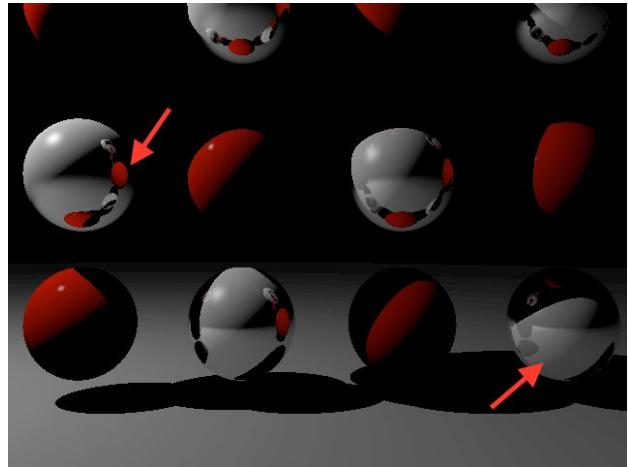


Graphical Representations of Recursion

- Our first exposure to recursion yesterday was graphical in nature!
 - "Vee" is a recursive program that traces the path of a sprite in Scratch
 - The sprite draws out a funky tree-like structure as it goes along its merry way
- Graphical representations of recursion allow us to visualize the result of having **multiple recursive calls**
 - Understanding this "branching" of the tree is critical to solving challenging problems with recursion







Recursive Ray Tracing
(source)

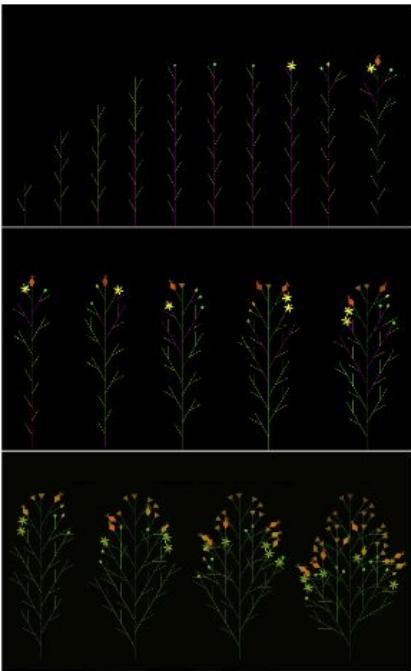
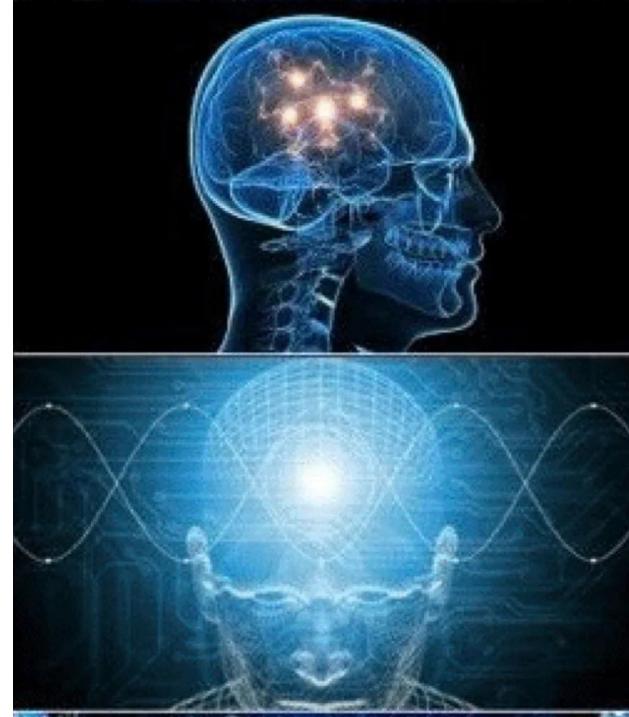


Figure 3.17: Development of *Mycelis muralis*



Algorithmic Botany

Simulating the Universe on a Supercomputer

Unlisted

2 watching now • Started streaming 14 minutes ago

1K 30

DISLIKE

SHARE

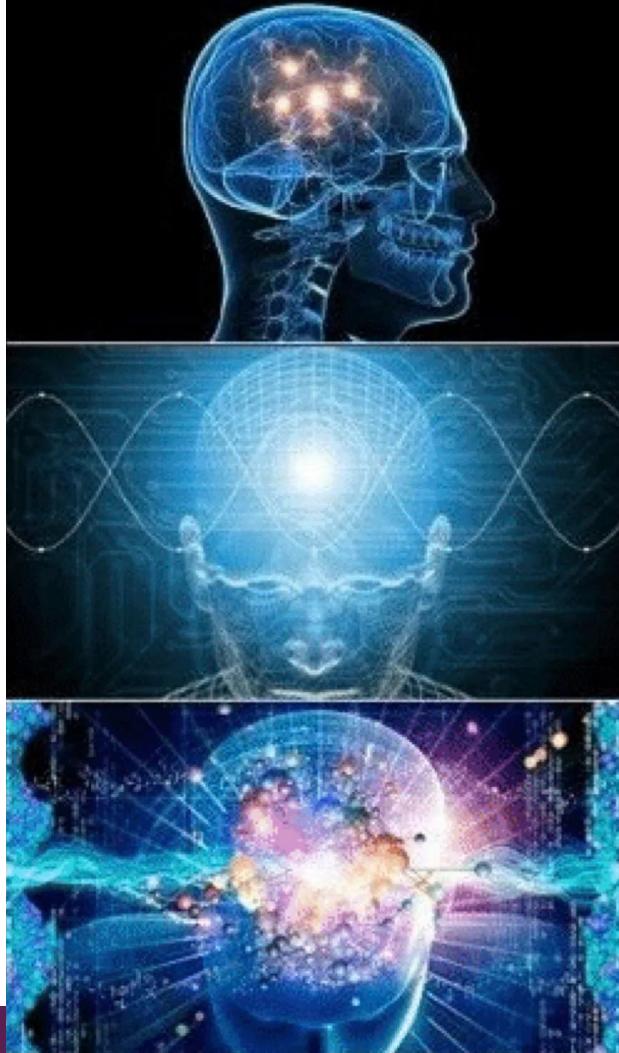
CLIP

SAVE

KIPAC

1.18K subscribers

SUBSCRIBE



Fractals

Fractals

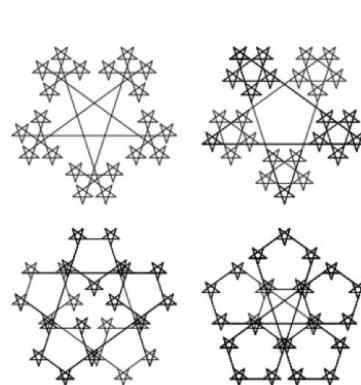
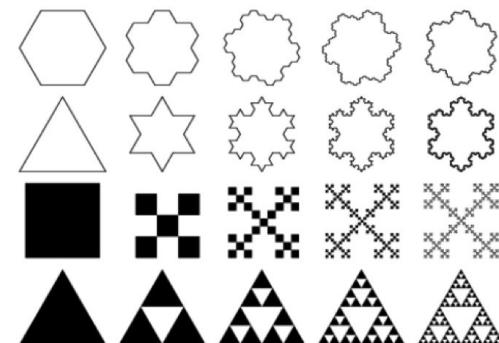
- A **fractal** is any repeated, graphical pattern.

Fractals

- A **fractal** is any repeated, graphical pattern.
- A fractal is composed of **repeated instances of the same shape or pattern**, arranged in a structured way.

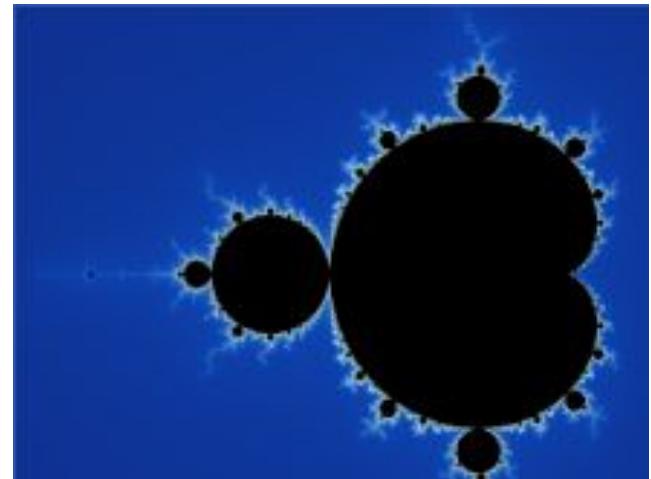
Fractals

- A **fractal** is any repeated, graphical pattern.
- A fractal is composed of **repeated instances of the same shape or pattern**, arranged in a structured way.

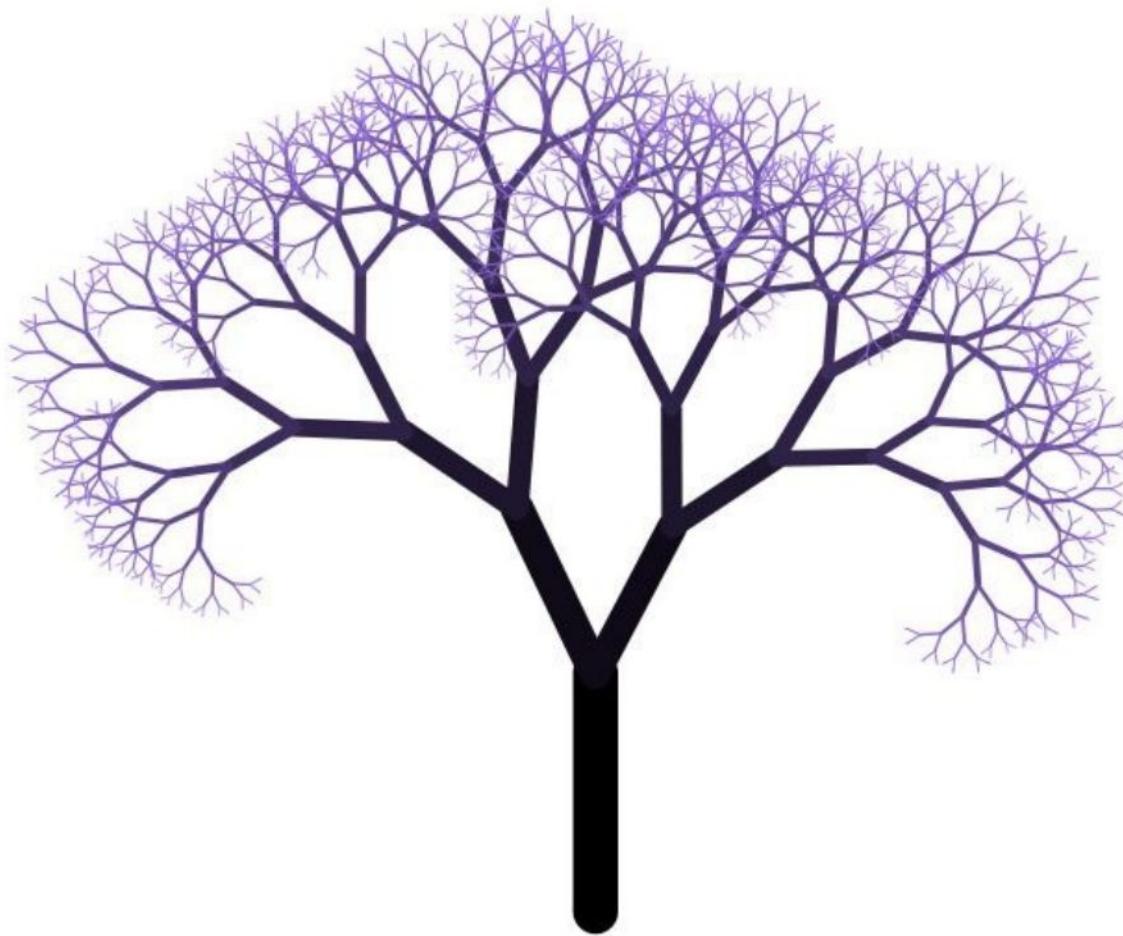


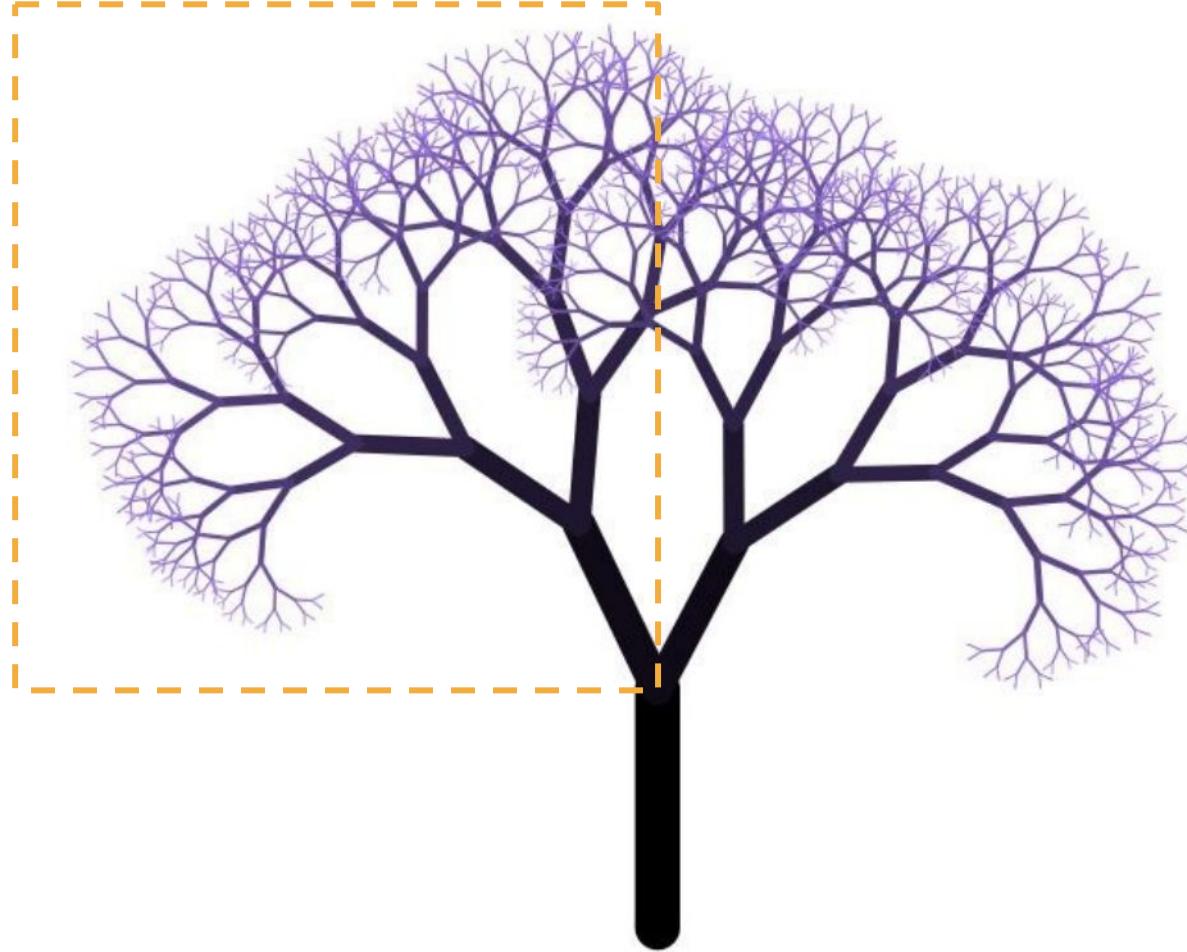
Fractals

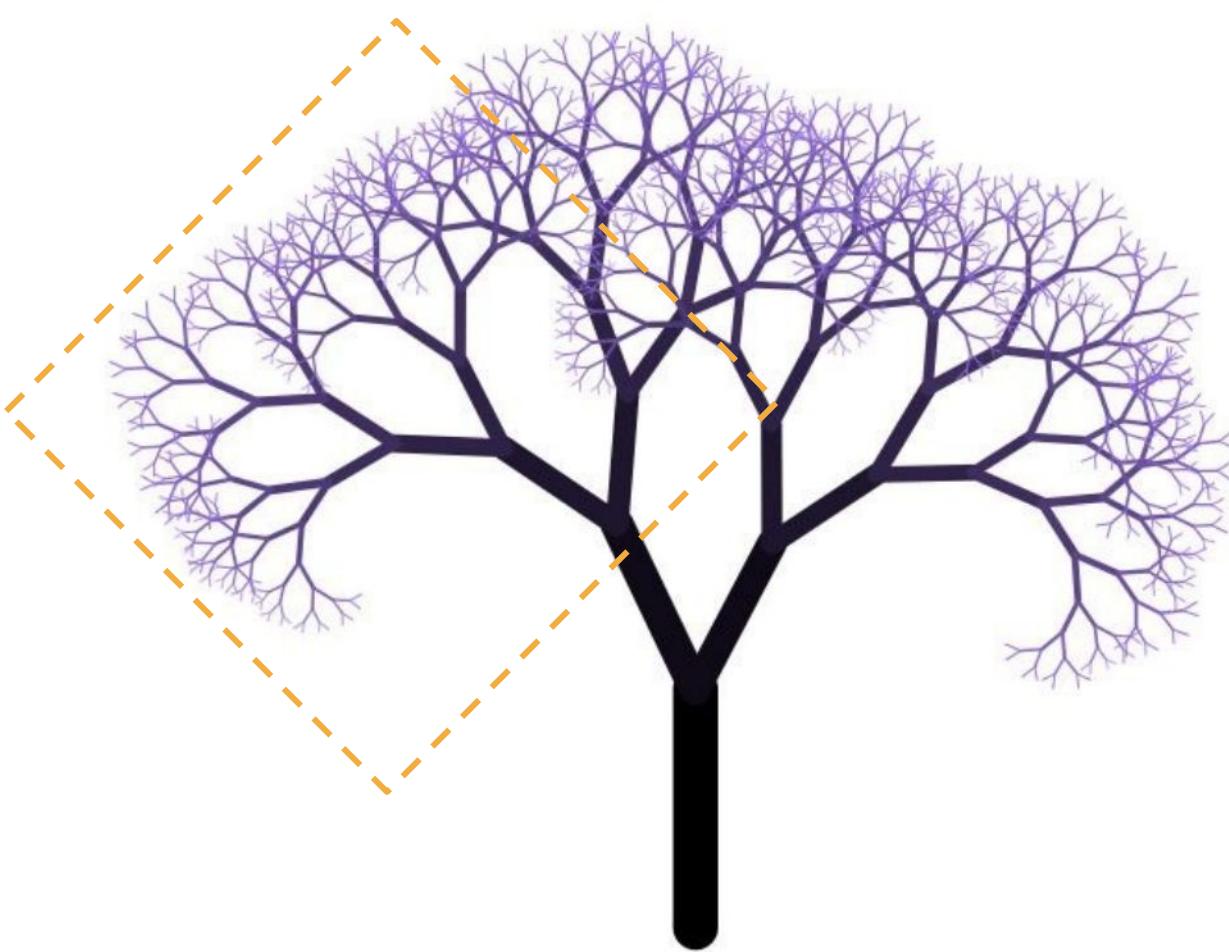
- A **fractal** is any repeated, graphical pattern.
- A fractal is composed of **repeated instances of the same shape or pattern**, arranged in a structured way.

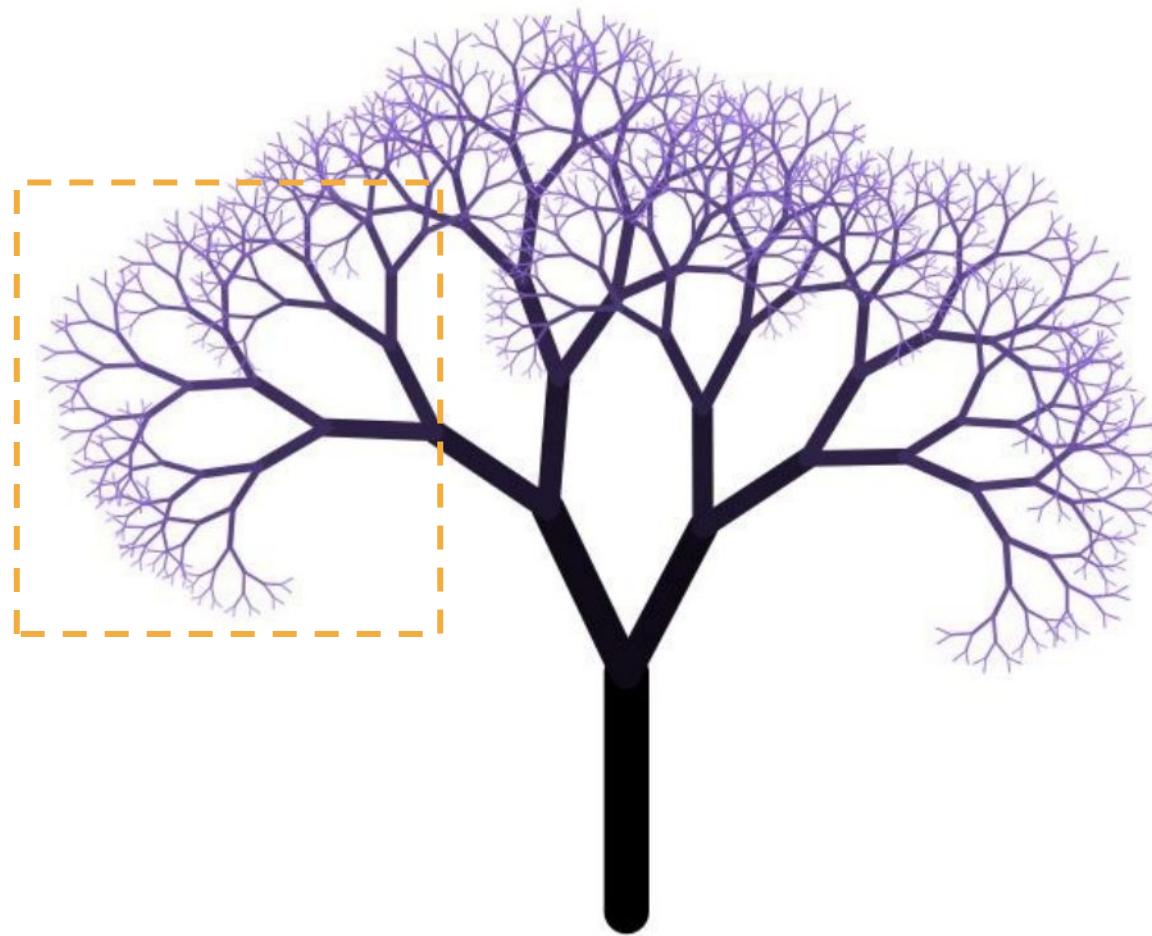


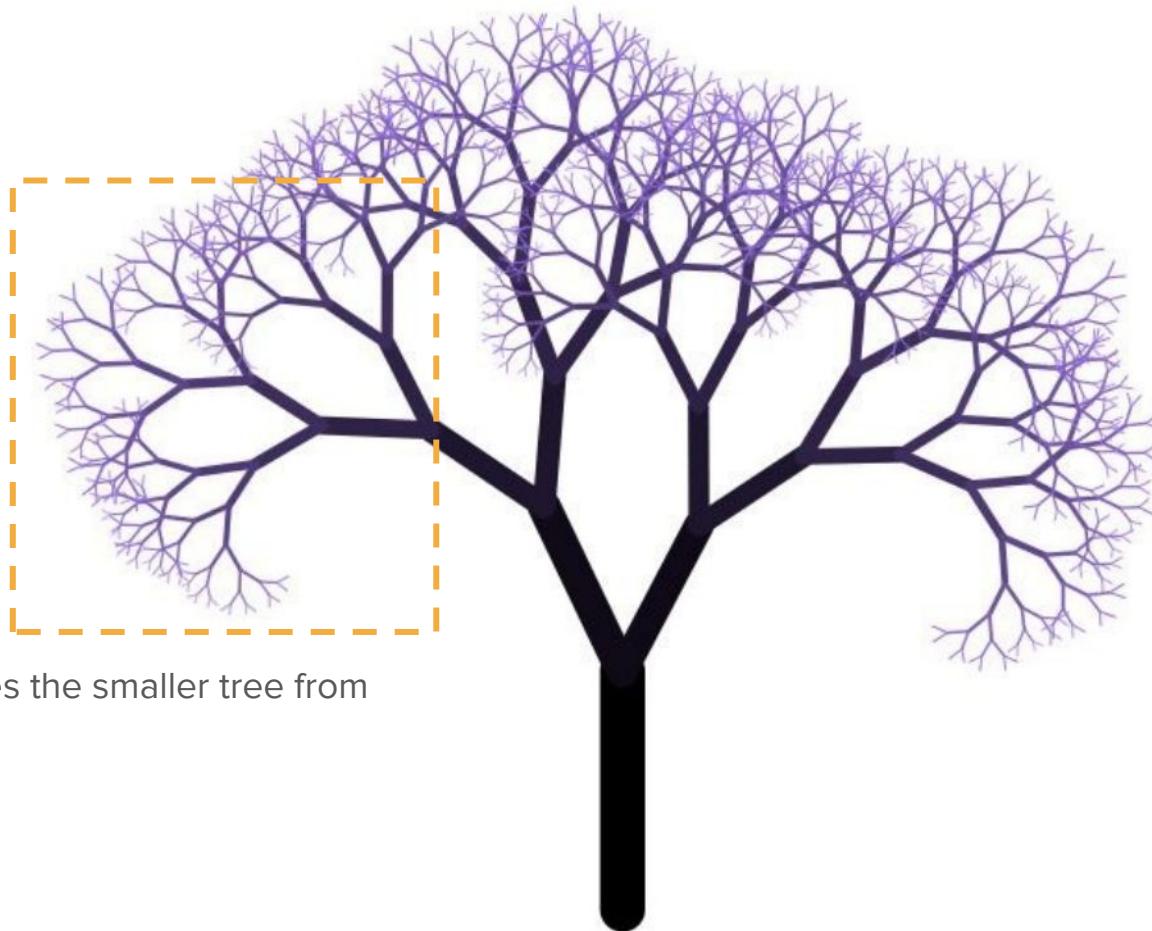
Understanding Fractal Structure



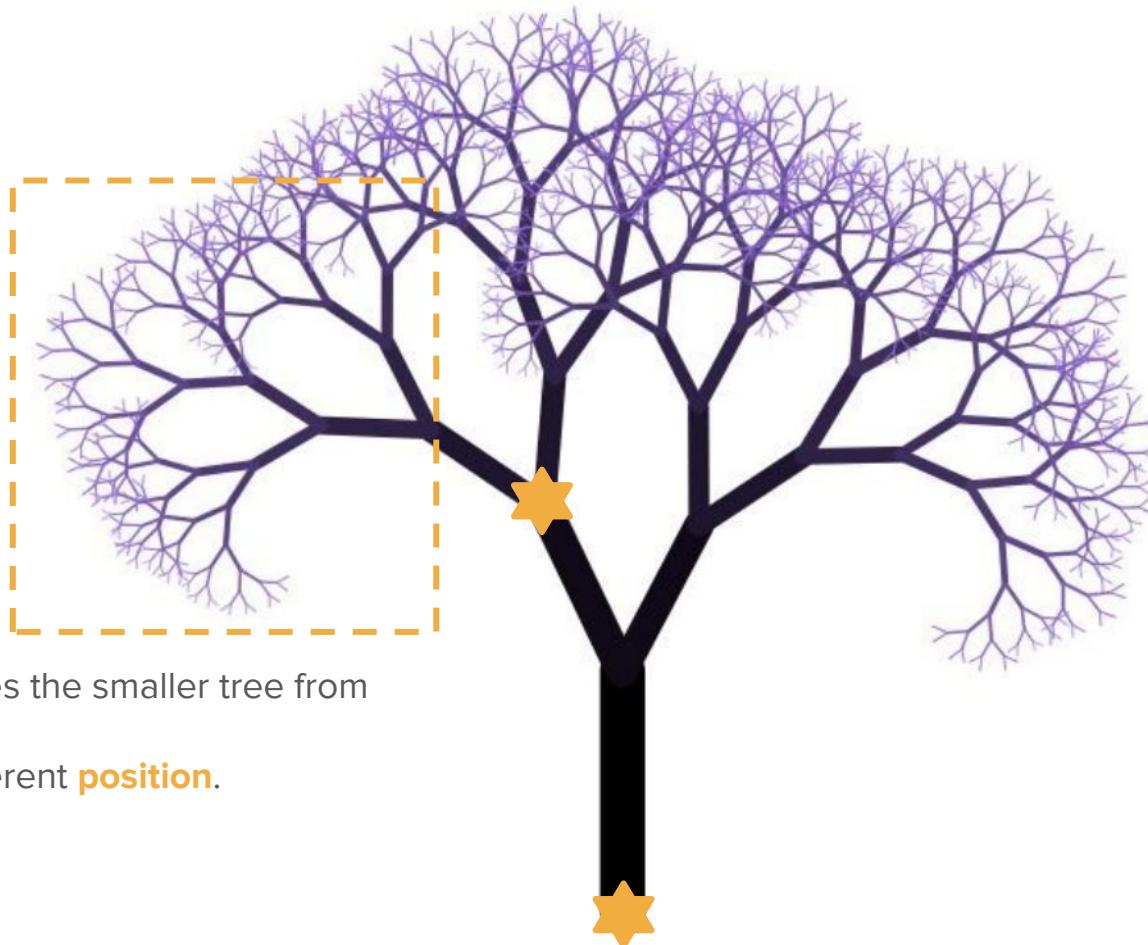






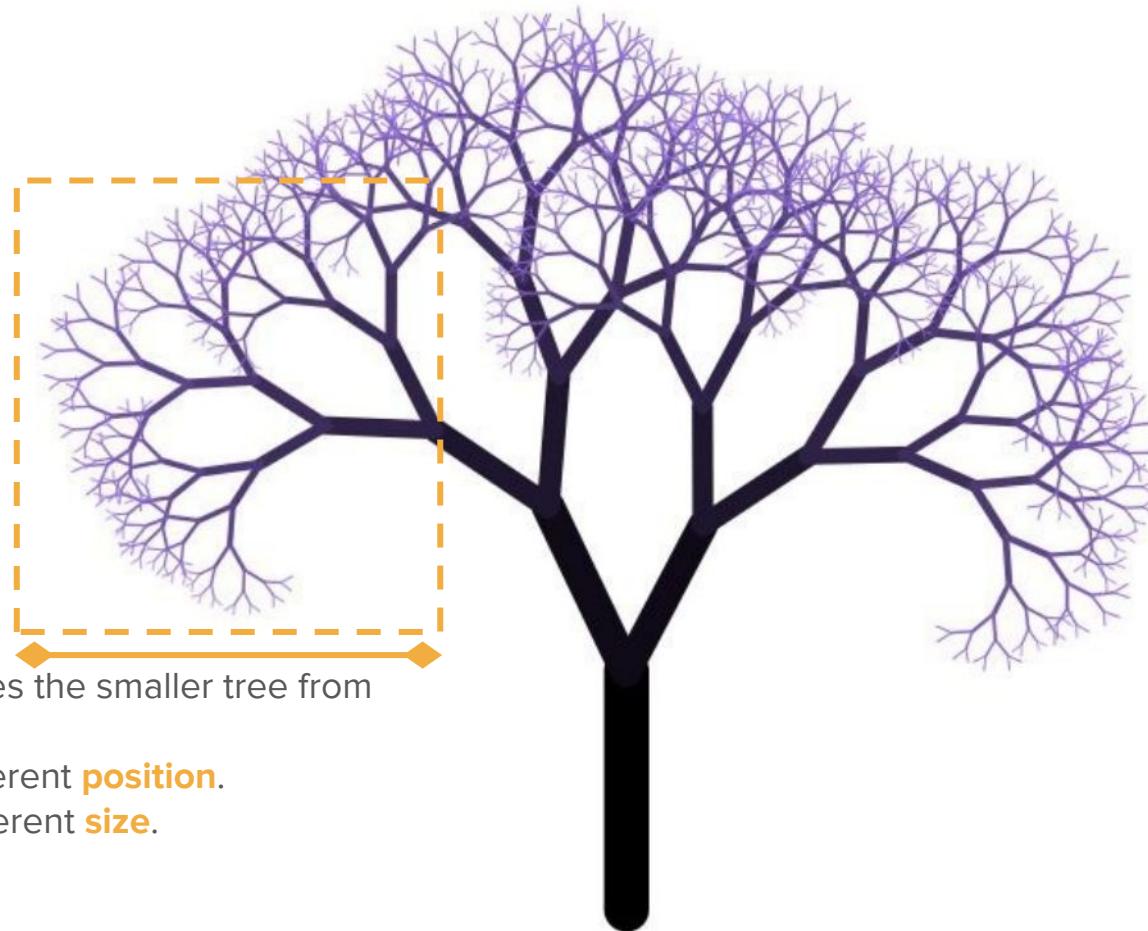


What differentiates the smaller tree from
the bigger one?



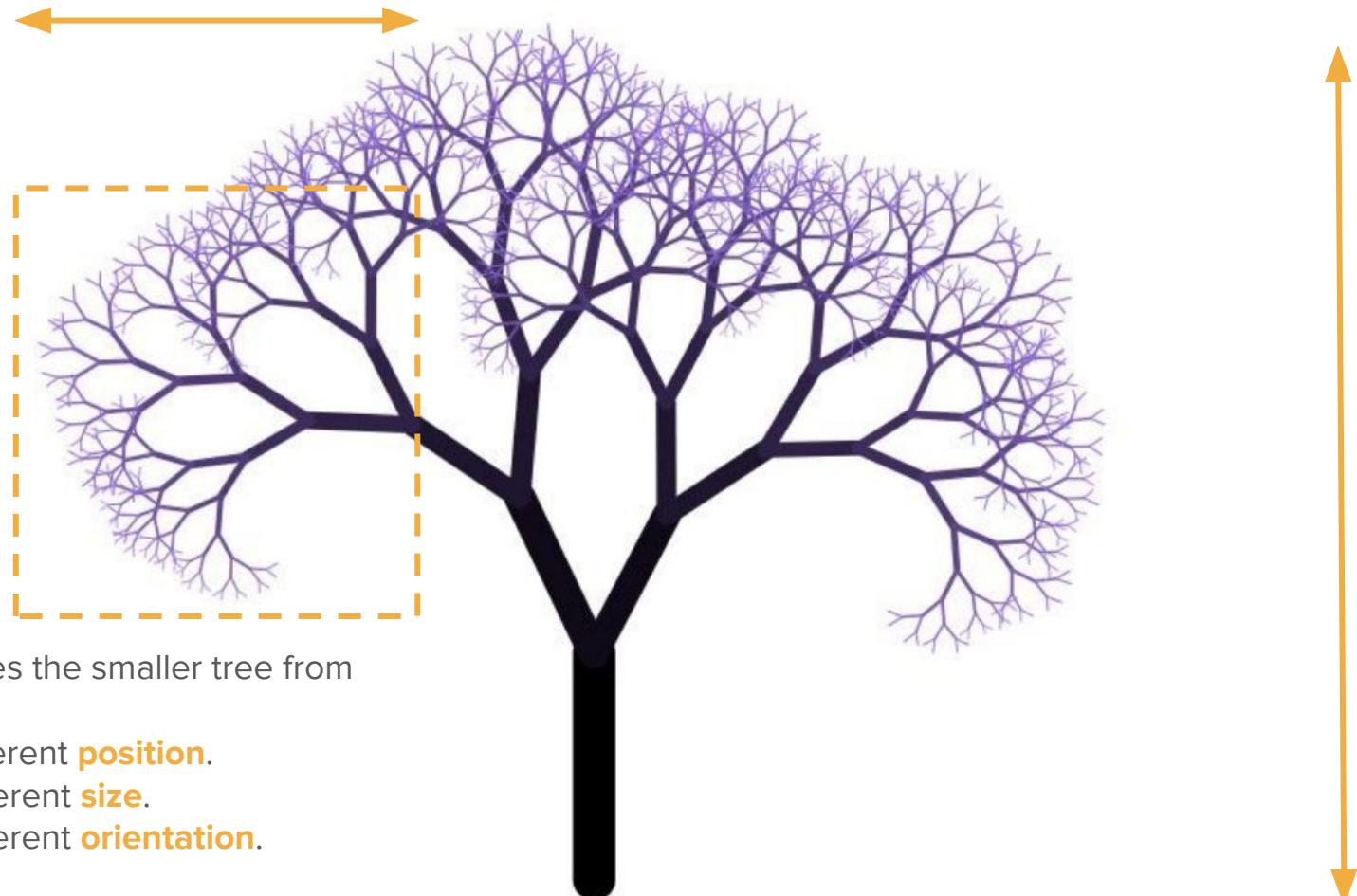
What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.



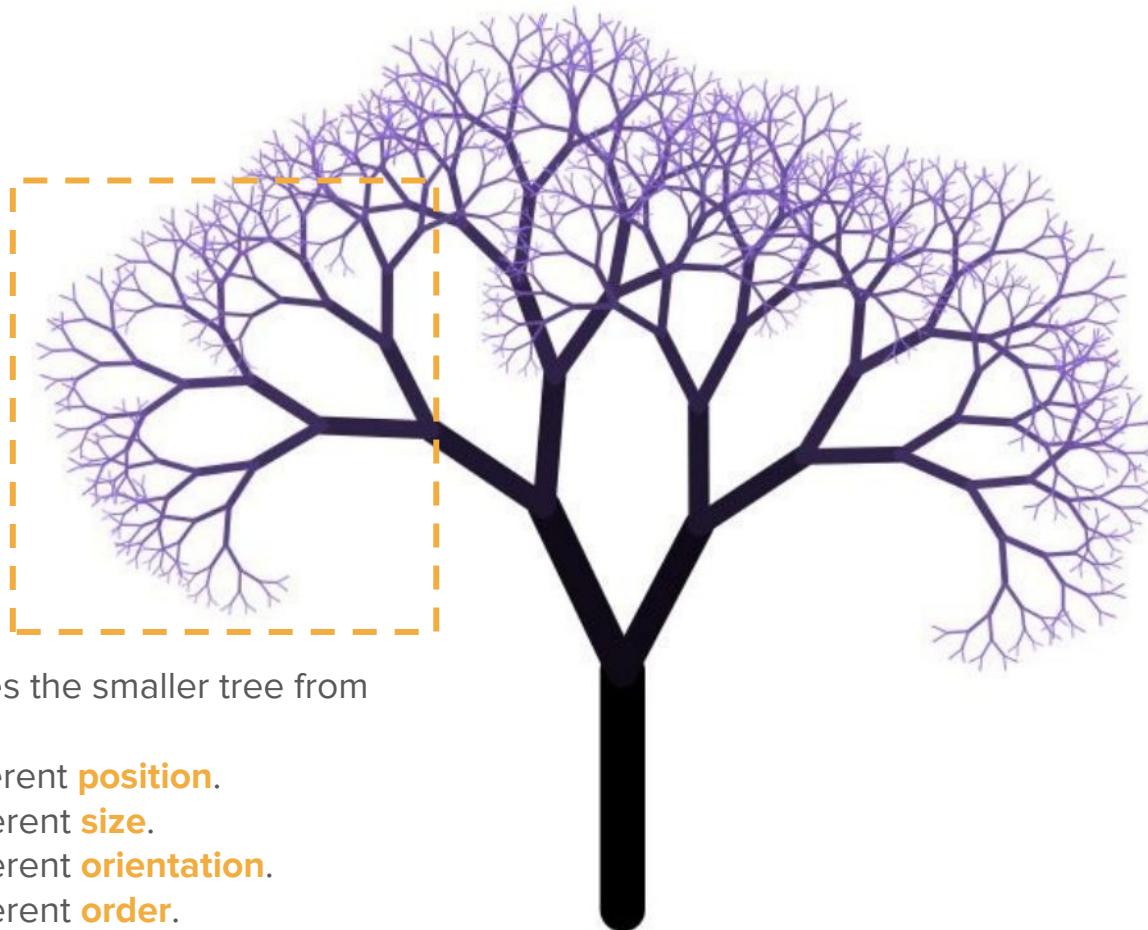
What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.



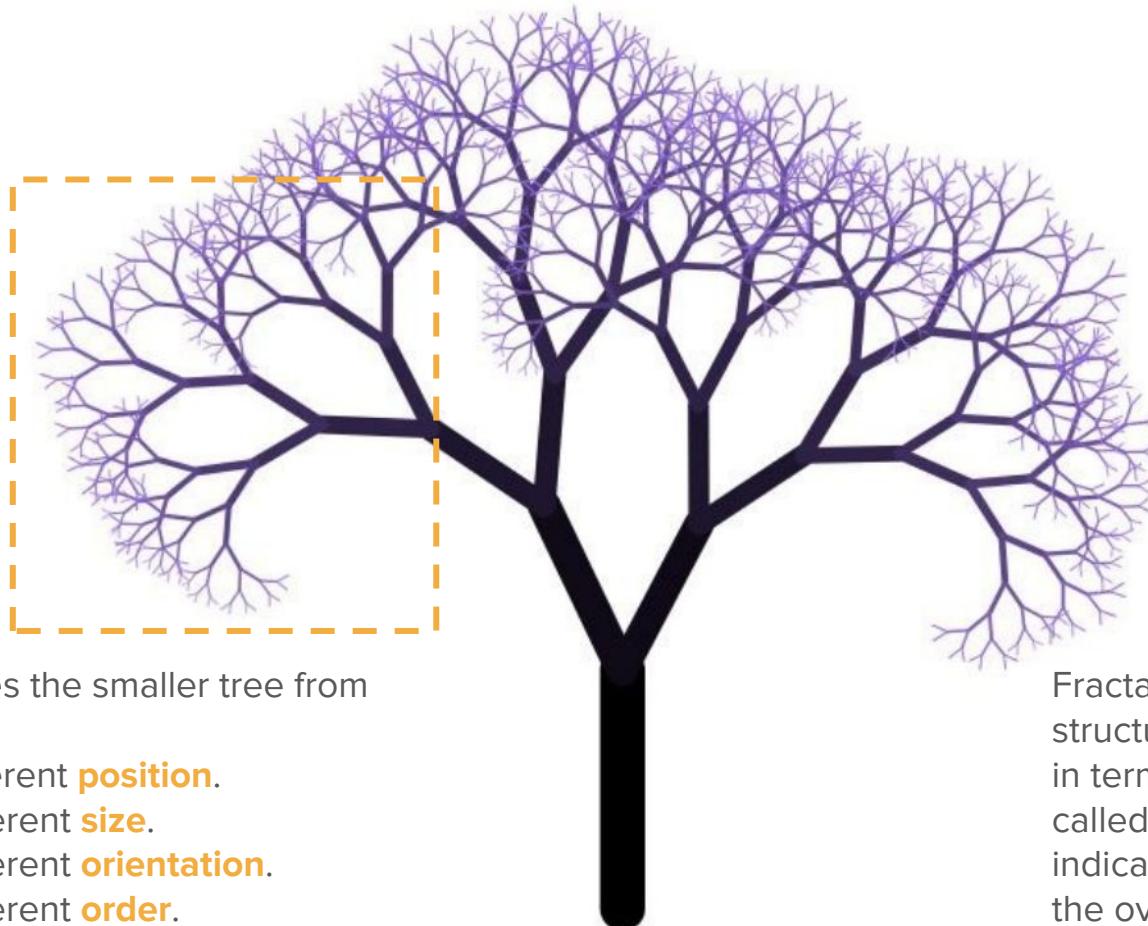
What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.



What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.



What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

An order-0 tree

What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

An order-1 tree

What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

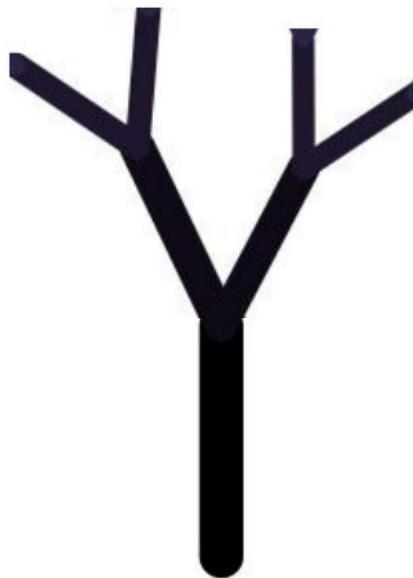
An order-2 tree

What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

An order-3 tree

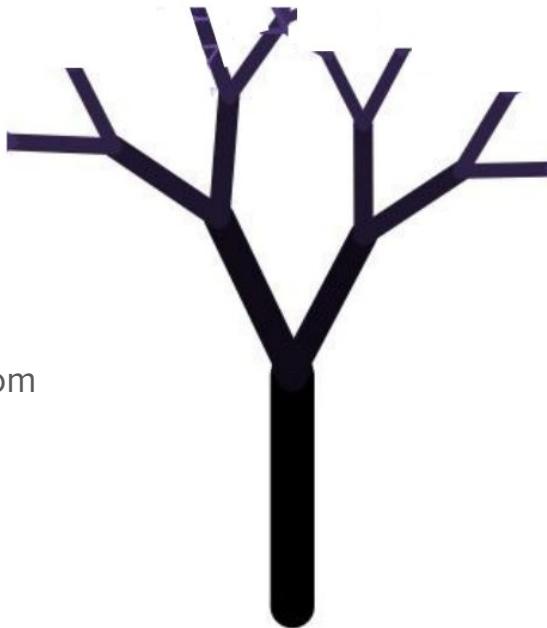


What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

An order-4 tree



What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

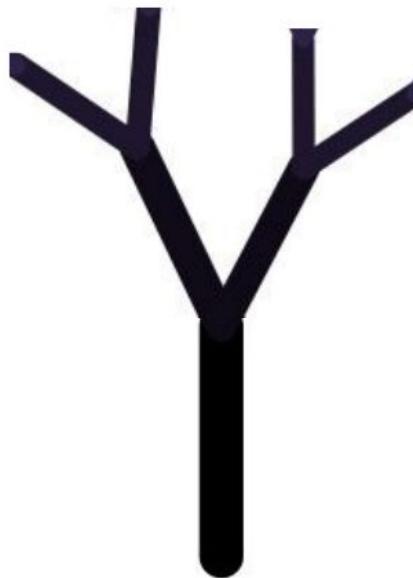
An order-11 tree

What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

An order-3 tree



What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

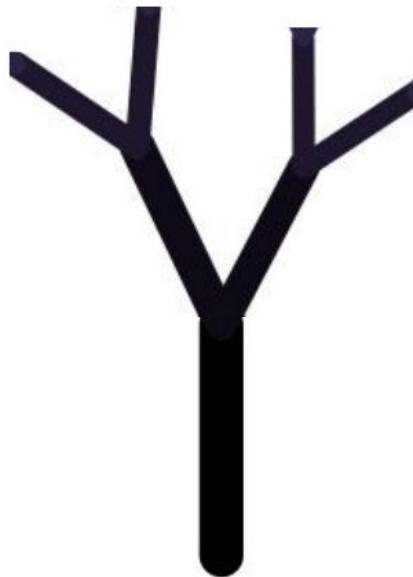
An order-3 tree

An order-0 tree is nothing at all.

An order-**n** tree is a line with two smaller order- (**n-1**) trees starting at the end of that line.

What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.



Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

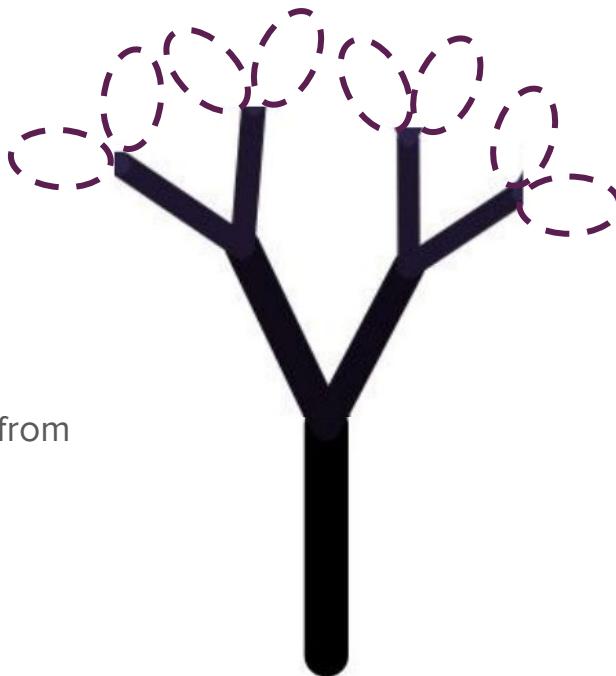
An order-4 tree?

An order-0 tree is nothing at all.

An order-**n** tree is a line with two smaller order- (**n-1**) trees starting at the end of that line.

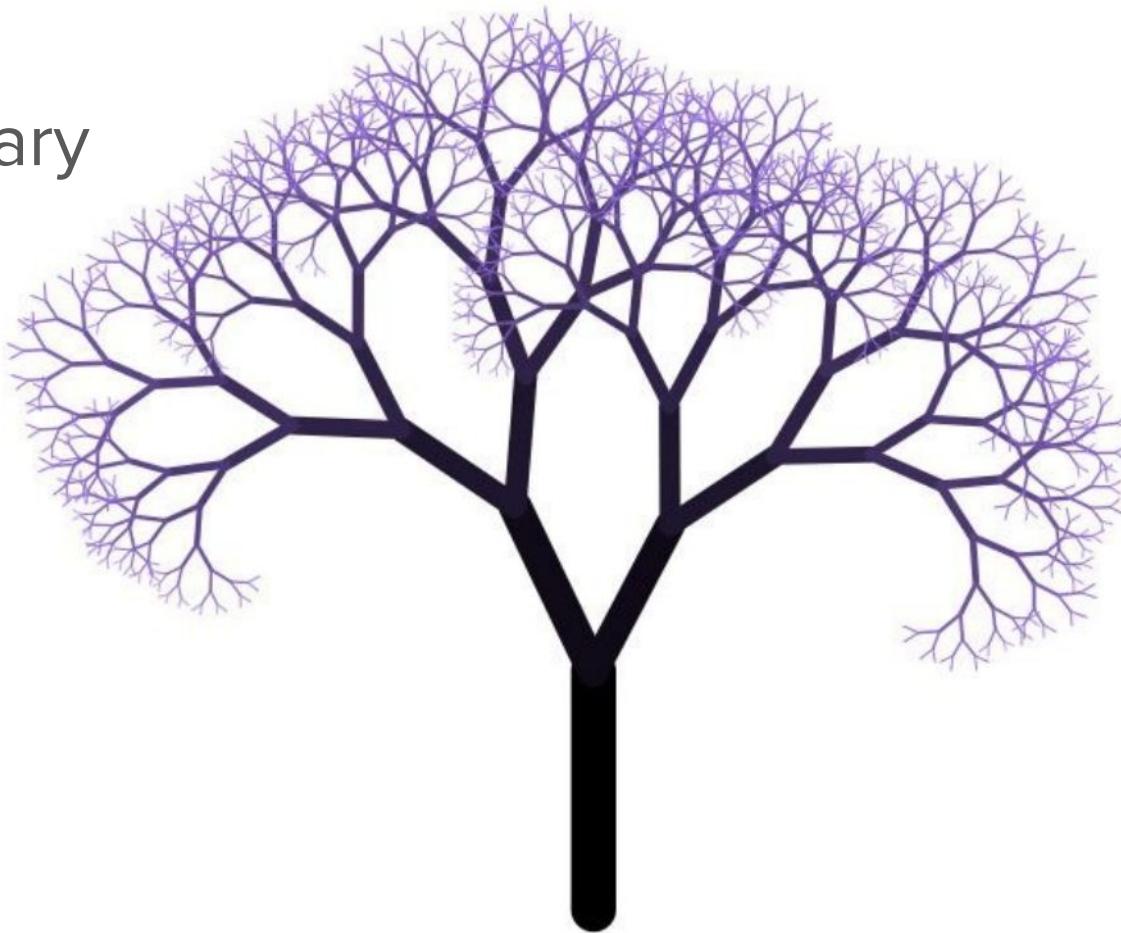
What differentiates the smaller tree from the bigger one?

1. It's at a different **position**.
2. It has a different **size**.
3. It has a different **orientation**.
4. It has a different **order**.

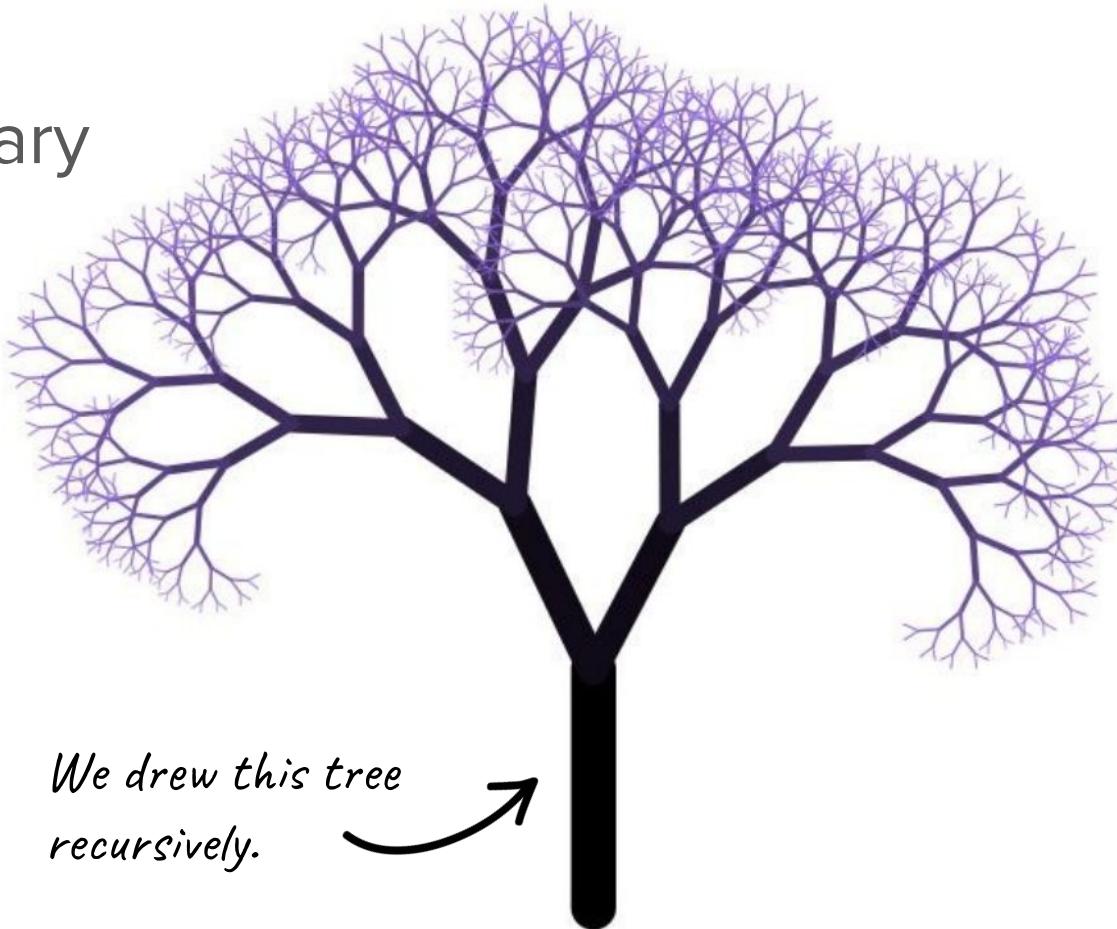


Fractals and self-similar structures are often defined in terms of some parameter called the **order**, which indicates the complexity of the overall structure.

In Summary

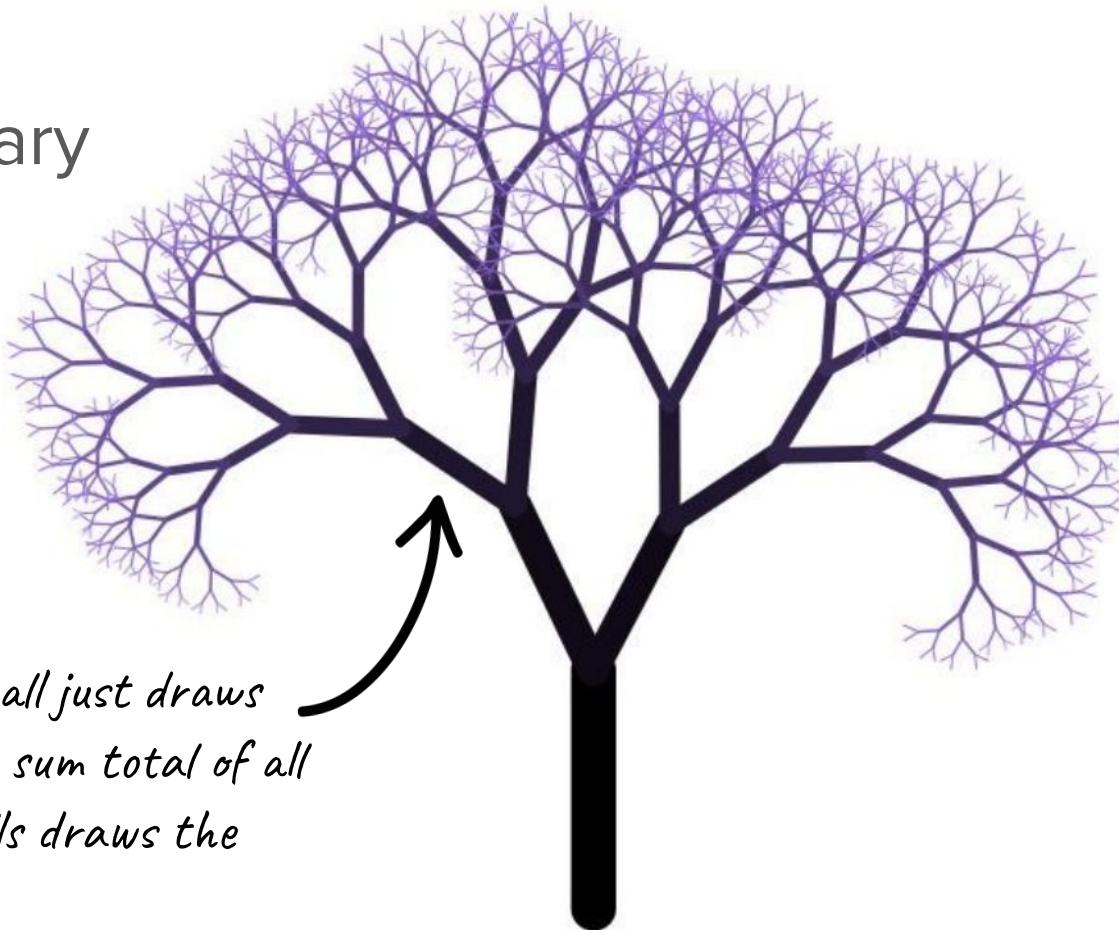


In Summary



*We drew this tree
recursively.*

In Summary



Each recursive call just draws one branch. The sum total of all the recursive calls draws the whole tree.

Announcements

Announcements

- Make sure to check out our [Week 3 announcement post](#) on Ed – there's lot of important info contained there!
- Assignment 1 Feedback is out today! Revisions are due **Sunday, July 10, at 11:59pm PDT.**
- The Midterm will be administered next Monday during lecture.
 - Read this entire info [page](#).
 - Things to note: practice exam (format, length); practice problems
 - Things to note: today is the last day of content that will be covered on the midterm. Tomorrow's content will appear as an extra credit problem.

How can we use recursion to
make art?

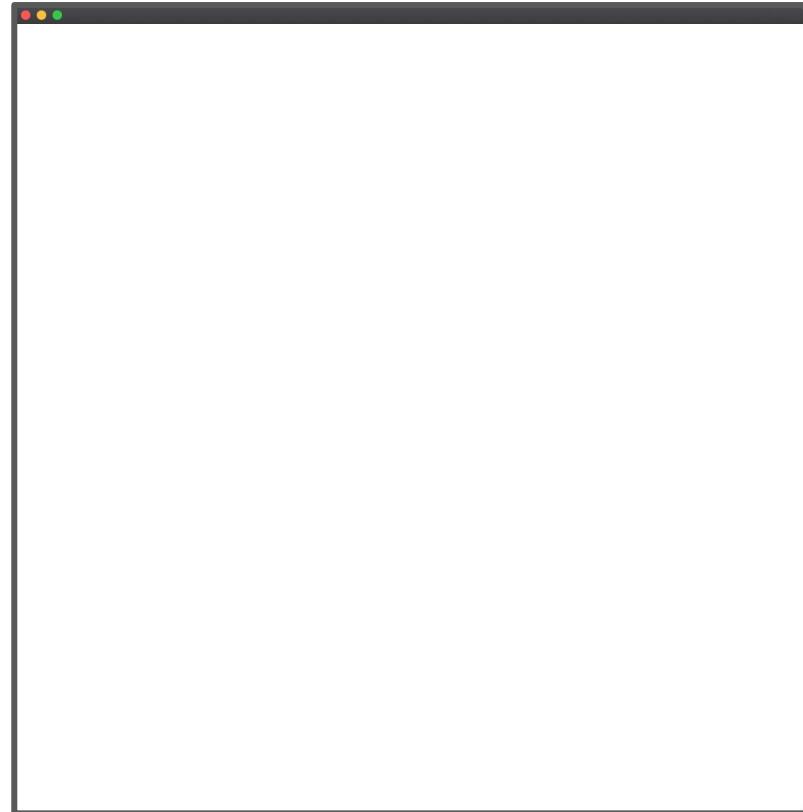
C++ Stanford graphics library

Graphics in CS106B

- Creating graphical programs is not one of our main focuses in this class, but a brief crash course in working with graphical programs is necessary to be able to code up some fractals of our own.
- The Stanford C++ libraries provide extensive capabilities to create custom graphical programs. The full documentation of these capabilities can be found in the [official documentation](#).
- We will abstract away almost all of the complexity for you via provided helper functions.
 - There are two main classes/components of the library you need to know: **GWindow** and **GPoint**

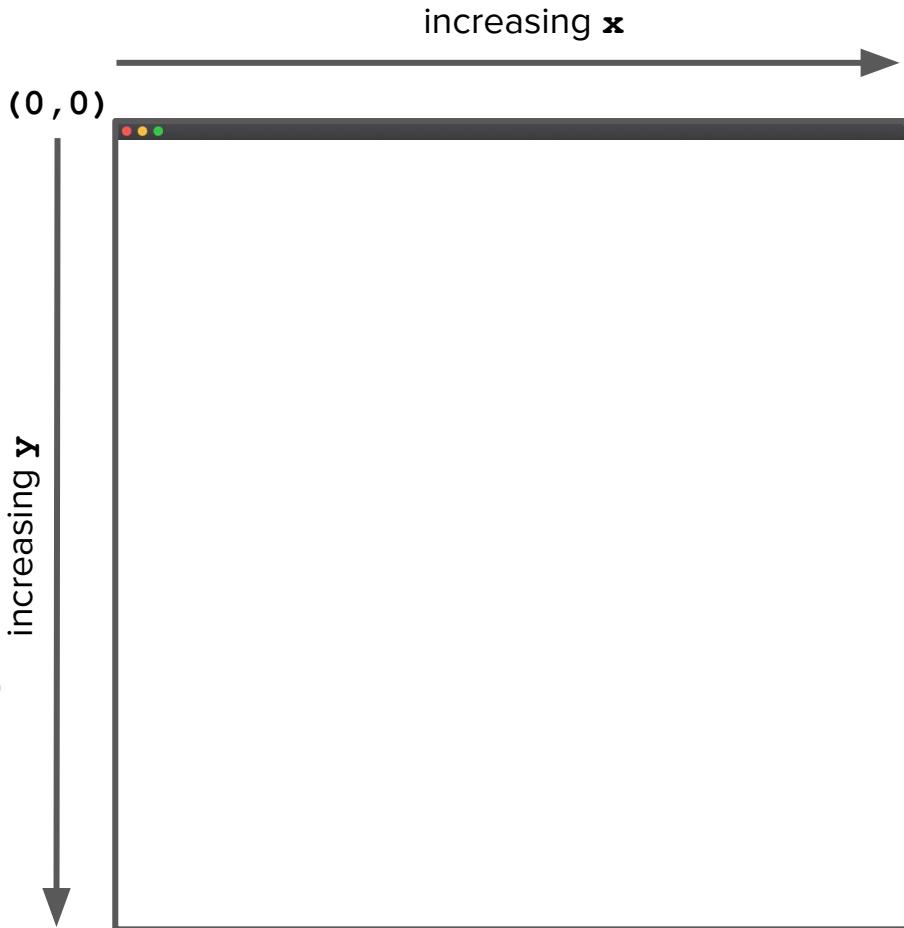
GWindow

- A **GWindow** is an abstraction for the graphical window upon which we will do all of our drawing.



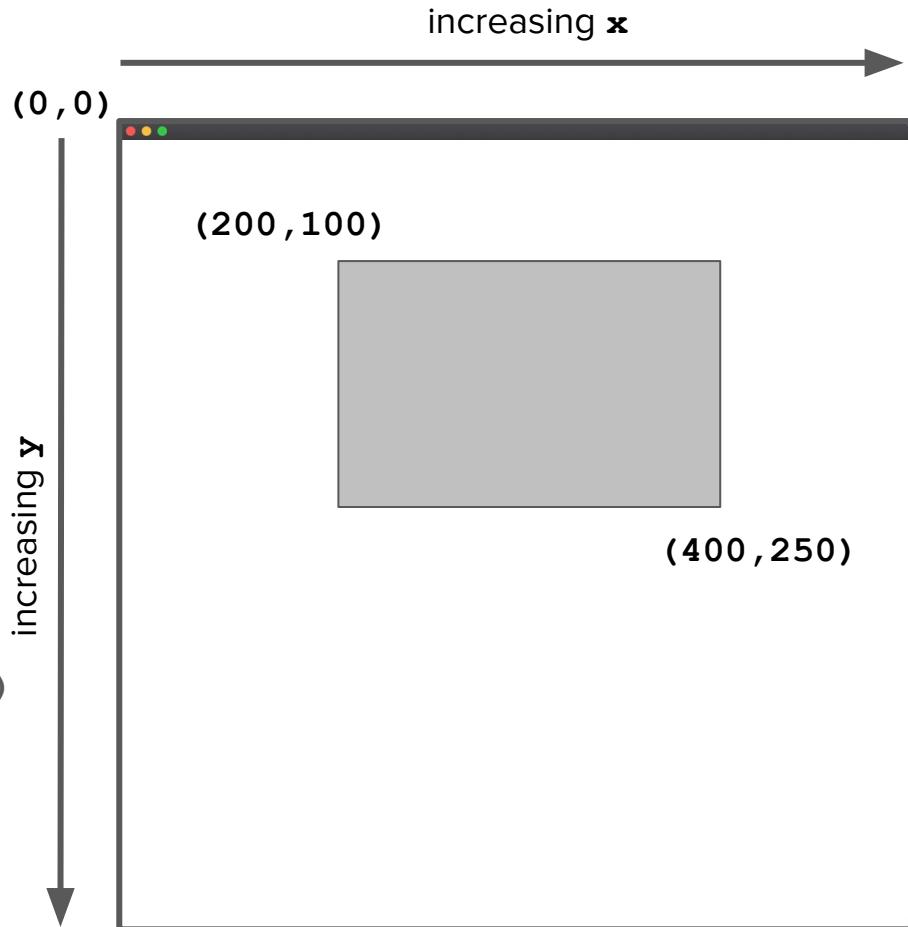
GWindow

- A **GWindow** is an abstraction for the graphical window upon which we will do all of our drawing.
- The window defines a coordinate system of x-y values
 - The top left corner is `(0, 0)`
 - The bottom right corner is `(windowWidth-1, windowHeight-1)`



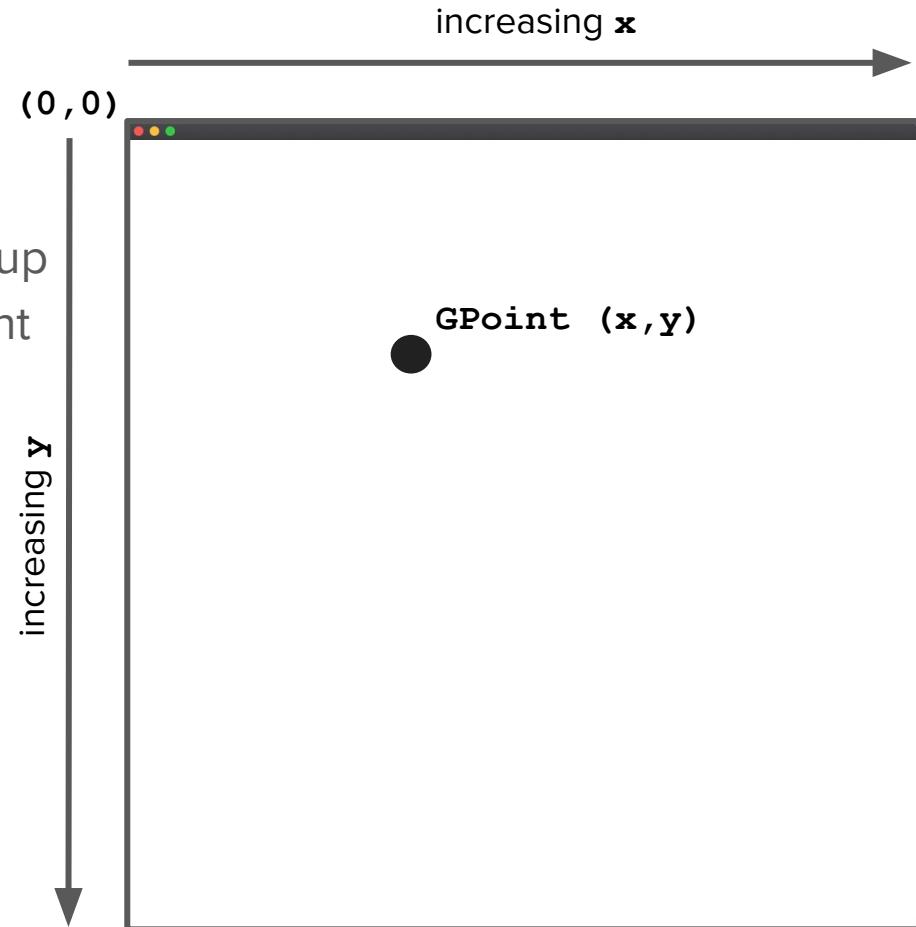
GWindow

- A **GWindow** is an abstraction for the graphical window upon which we will do all of our drawing.
- The window defines a coordinate system of x-y values
 - The top left corner is `(0, 0)`
 - The bottom right corner is `(windowWidth-1, windowHeight-1)`
- All lines and shapes drawn on the window are defined by their `(x, y)` coordinates



GPoint

- A **GPoint** is a handy way to bundle up the x-y coordinates for a specific point in the window.
 - Very similar in functionality to the **GridLocation** struct we learned about before!

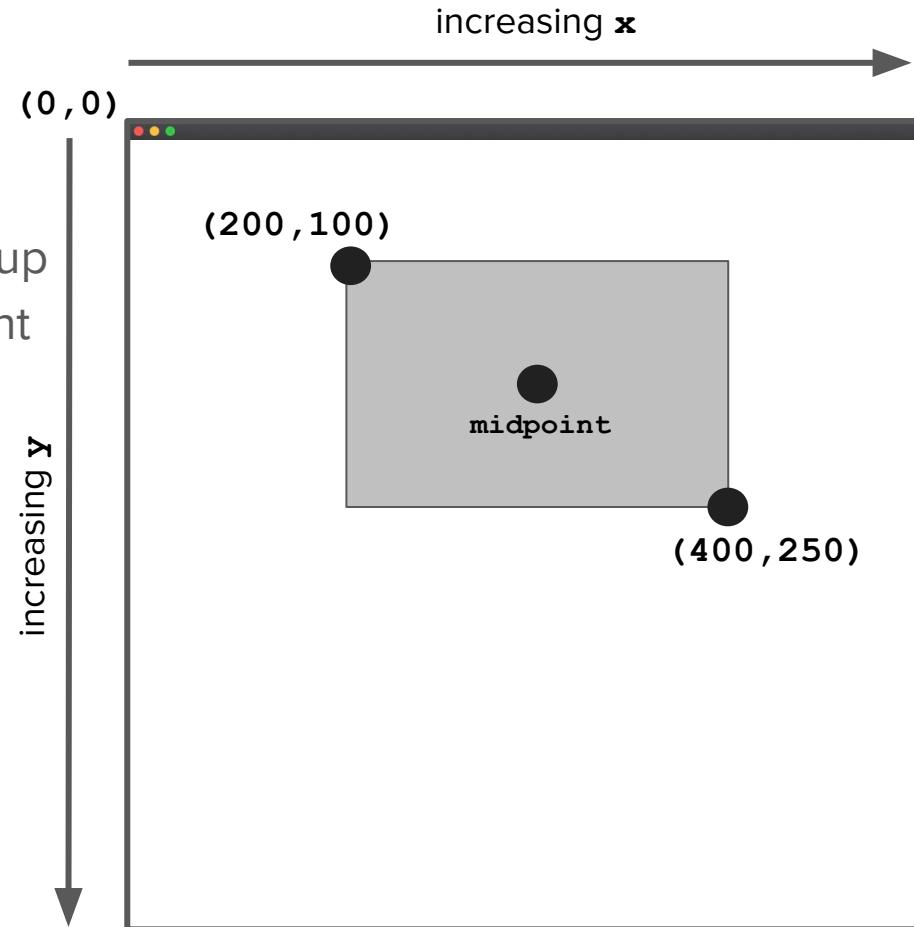


GPoint

- A **GPoint** is a handy way to bundle up the x-y coordinates for a specific point in the window.
 - Very similar in functionality to the **GridLocation** struct we learned about before!

```
GPoint topLeft(200, 100);
GPoint bottomRight(400, 250);
drawFilledRect(topLeft, bottomRight);

GPoint midpoint = {
    (topLeft.x + bottomRight.x) / 2,
    (topLeft.y + bottomRight.y) / 2
};
```



Cantor Set example

Cantor Set

- The first fractal we will code is called the "Cantor" fractal, named after the late-19th century German mathematician Georg Cantor.
- The Cantor fractal is a set of lines where there is one main line, and below that there are two other lines: each $\frac{1}{3}$ of the width of the original line, with one on the left and one on the right (with a $\frac{1}{3}$ separation of whitespace between them)
- Below each of the other lines is an identical situation: two $\frac{1}{3}$ lines.
- This repeats until the lines are no longer visible.

An order-0 Cantor Set

An order-1 Cantor Set

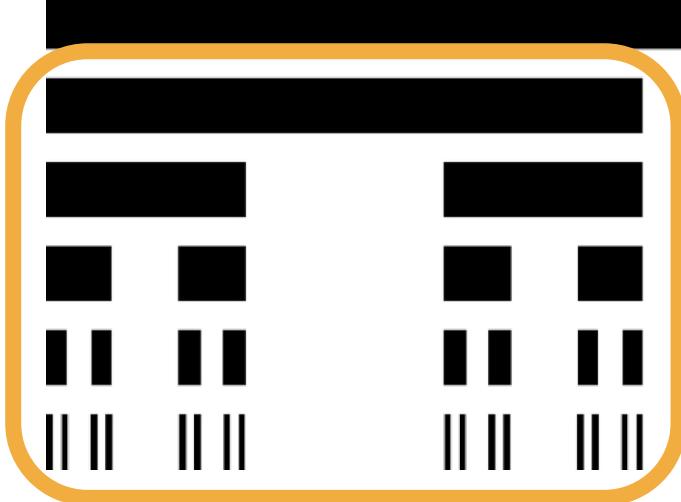
An order-2 Cantor Set

An order-6 Cantor Set

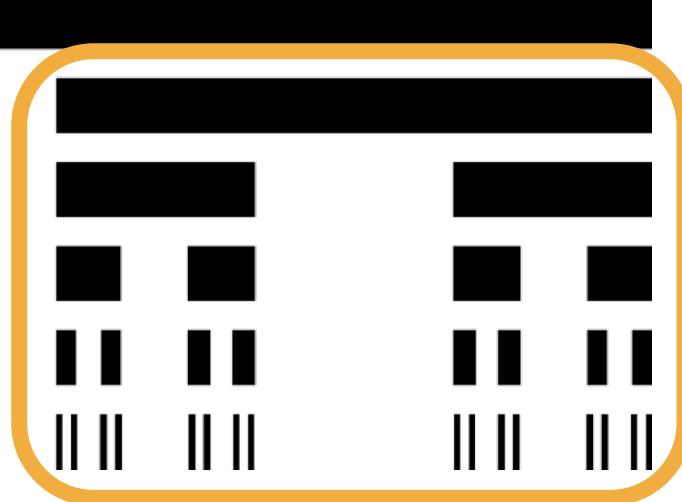
An order-6 Cantor Set

Another Cantor Set

An order-6 Cantor Set

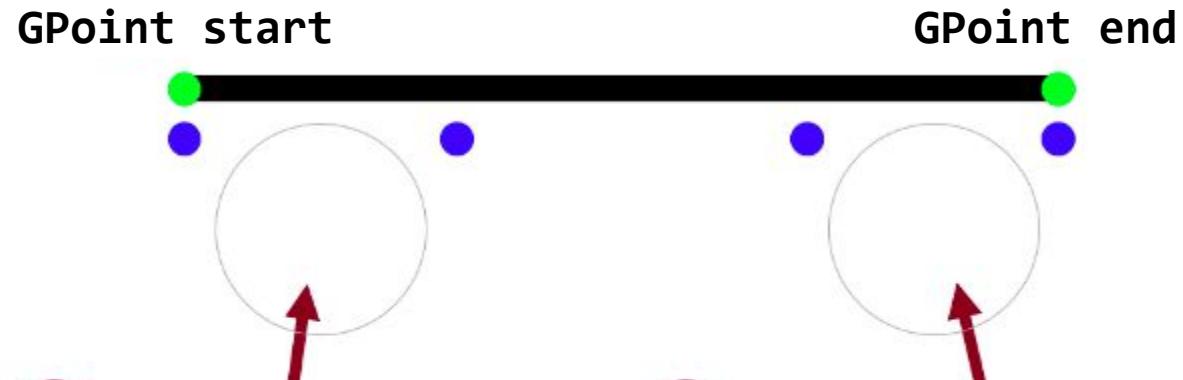


Another Cantor Set



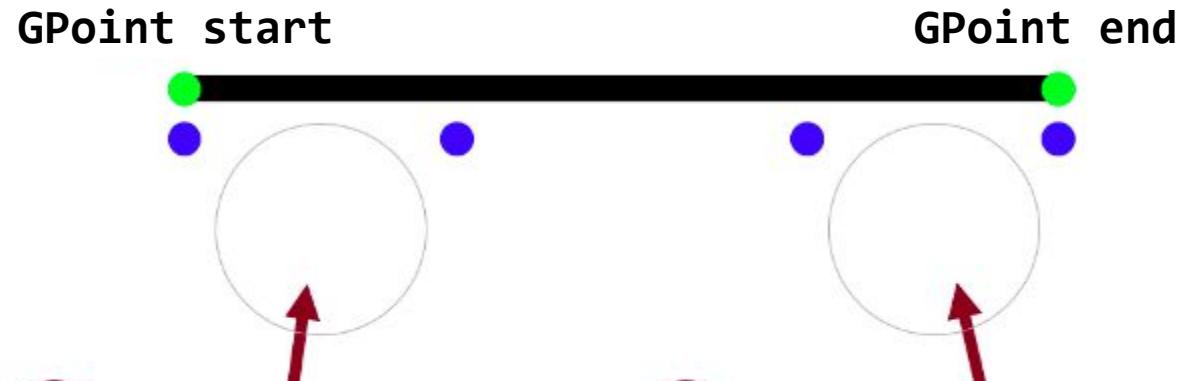
Also a Cantor Set

How to draw an order-n Cantor Set



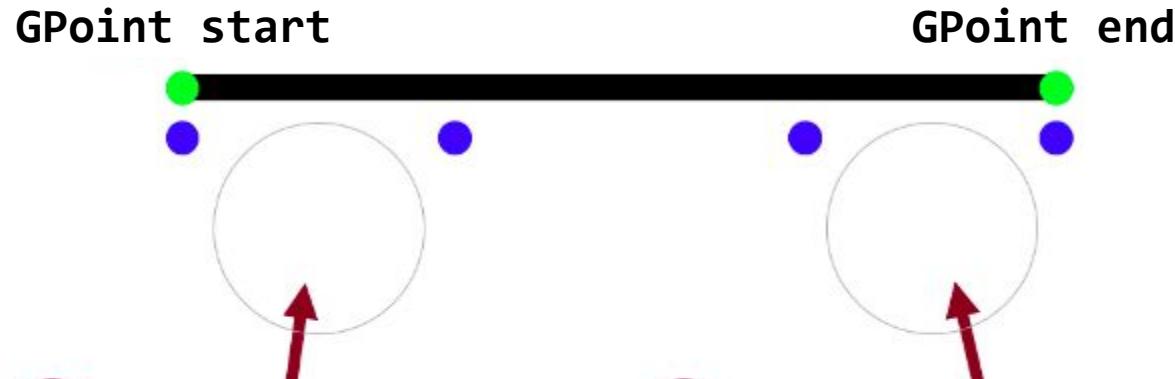
How to draw an order-n Cantor Set

1. Draw a line from **start** to **end**.



How to draw an order-n Cantor Set

1. Draw a line from **start** to **end**.

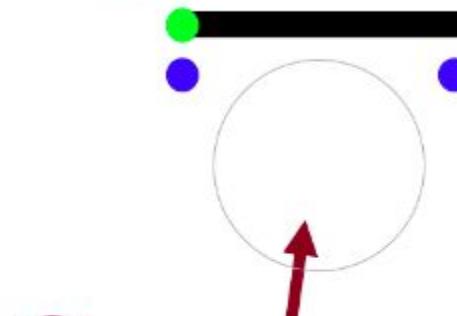


2. Underneath the left third, draw a Cantor Set of order-($n - 1$).

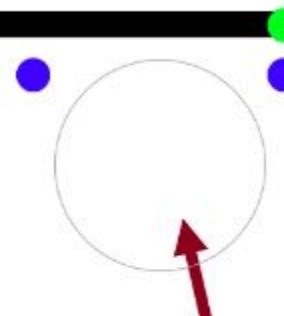
How to draw an order-n Cantor Set

1. Draw a line from **start** to **end**.

GPoint start



GPoint end



2. Underneath the left third, draw a Cantor Set of order-($n - 1$).

3. Underneath the right third, draw a Cantor Set of order-($n - 1$).

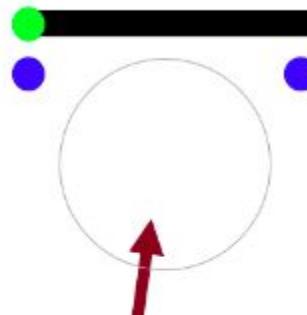
How to draw an order-n Cantor Set

Base case:

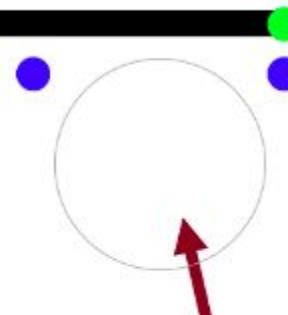
order == 0

1. Draw a line from **start** to **end**.

GPoint start



GPoint end



2. Underneath the left third, draw a Cantor Set of order-($n - 1$).

3. Underneath the right third, draw a Cantor Set of order-($n - 1$).

Pseudocode exercise

```
void drawCantor(GWindow &w, int level, GPoint left, GPoint right) {  
    // Base case  
    if _____, _____  
  
    //Recursive case  
    step 1: _____  
    step 2: _____  
    step 3: _____  
}
```


Attendance ticket:

<https://tinyurl.com/drawcantor>

Please don't send this link to students who are not here. It's on your honor!

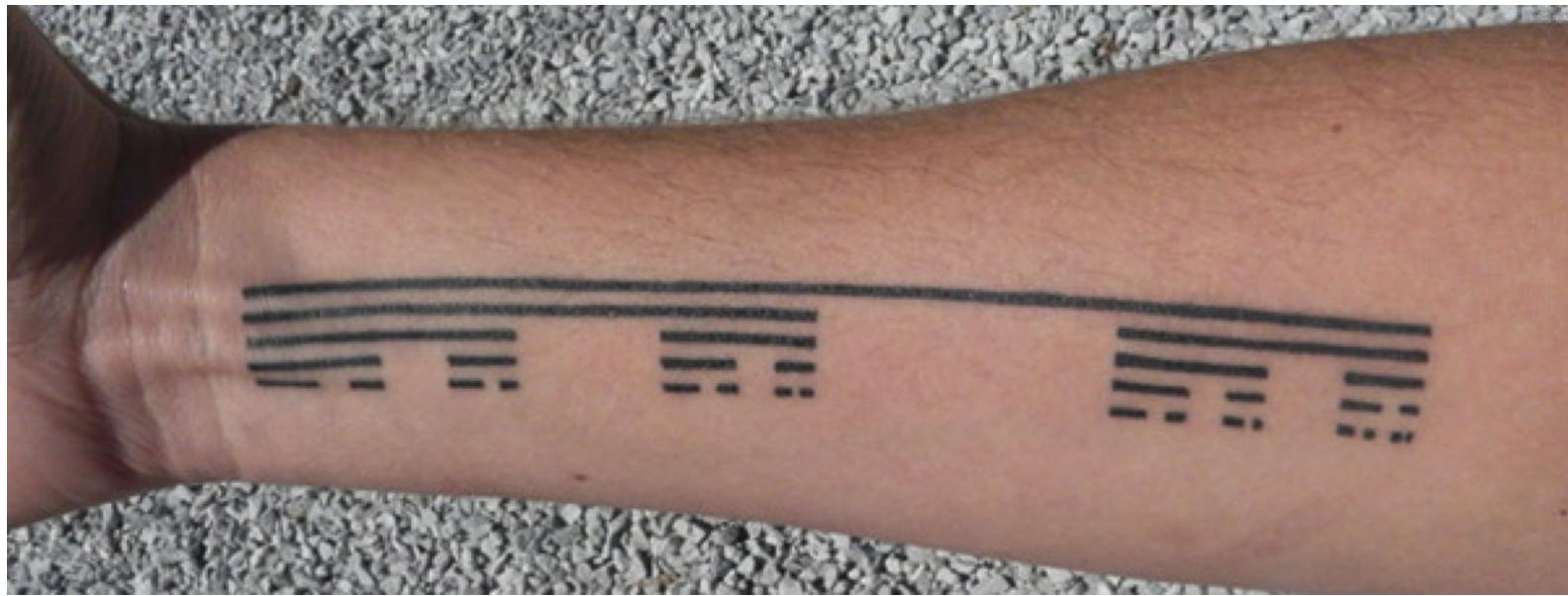
Cantor Set demo

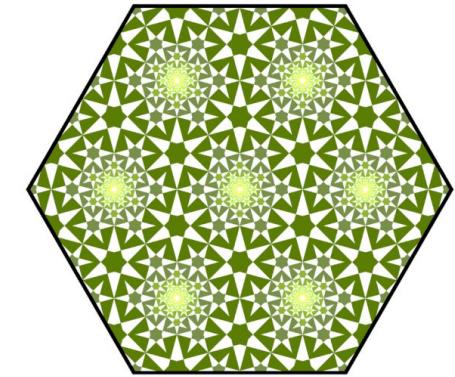
[Qt Creator]

```
void drawCantor(GWindow &w, int level, GPoint left, GPoint right) {  
    // Base case: simplest possible version of the problem (nothing!)  
    if (level == 0) {  
        return;  
    }  
  
    pause(500); // for animated effect  
  
    // step 1: draw the line  
    drawThickLine(w, left, right);  
  
    // step 2: draw the left cantor fractal  
    GPoint oneThird = pointBetween(left, right, 1.0 / 3);  
    drawCantor(w, level - 1, getLoweredPoint(left), getLoweredPoint(oneThird));  
  
    // step 3: draw the right cantor fractal  
    GPoint twoThird = pointBetween(left, right, 2.0 / 3);  
    drawCantor(w, level - 1, getLoweredPoint(twoThird), getLoweredPoint(right));  
}
```

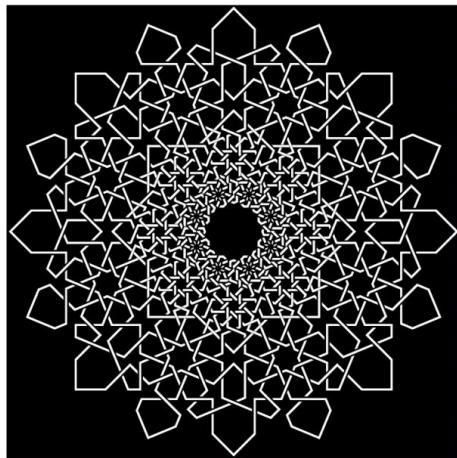
```
/*
void drawCantor(GWindow &w, int order, GPoint left, GPoint right) {
    /* TODO: Implement the Cantor Set drawing function. */
    /* Base case: order == 0, do nothing at all
     * Recursive case:
     *   1. Draw a main line from start to end
     *   2. Draw an order n-1 cantor set on the left third
     *   3. Draw an order n-1 cantor set on the right third
    */
}
```

Real-world application of the Cantor Set

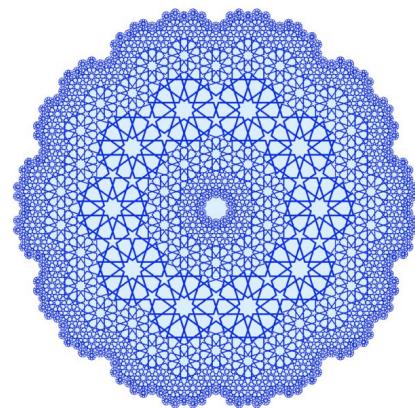




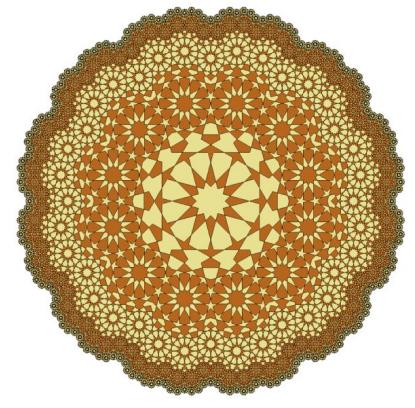
n=6, narrowed stars, radial repeating, mosaic w/color by level



n=8, scaled rosettes, radial inward, interlace w/equal band width



n=10, scaled rosettes, radial combined, outline w/variable band width



n=12, scaled extended rosettes, radial outward, mosaic 2-color

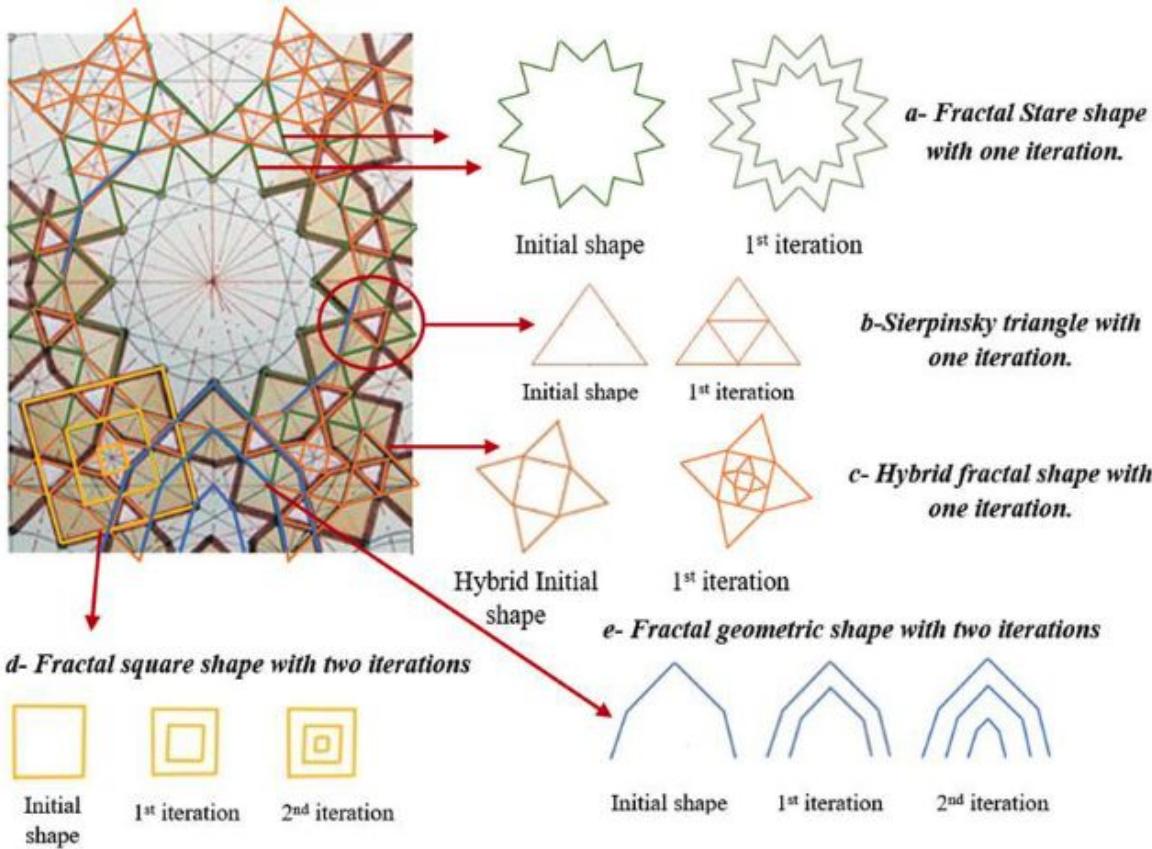
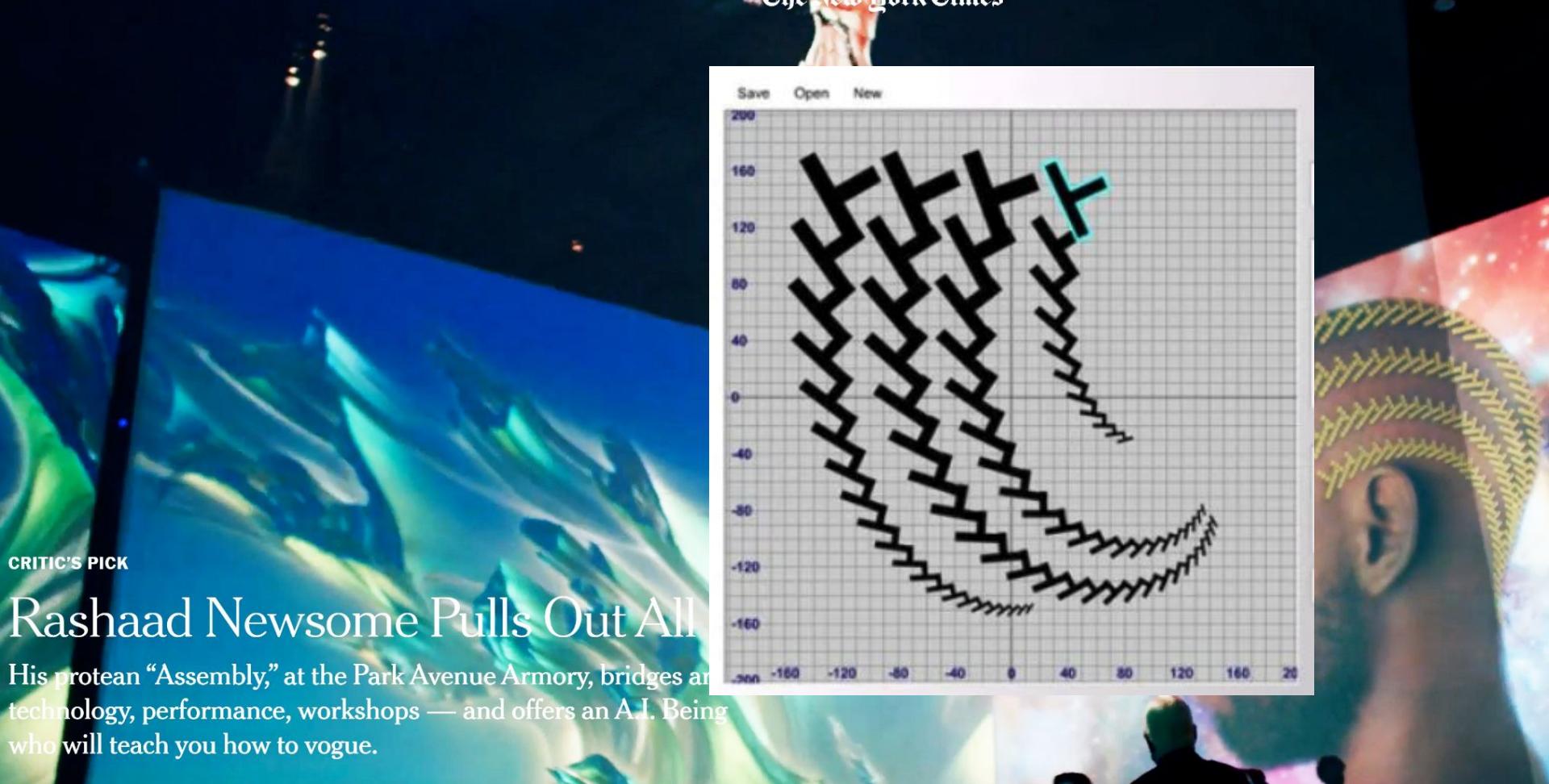


Figure1 : Umayyed Islamic fractal shapes.

Source: <https://fractalpattern.wordpress.com/2011/07/25/islamicgeometricpattern-origin/>

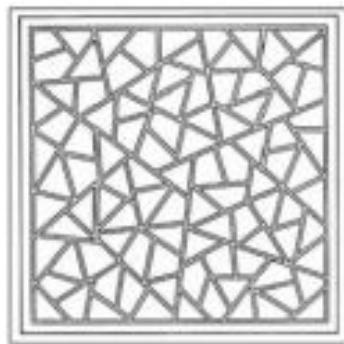


CRITIC'S PICK

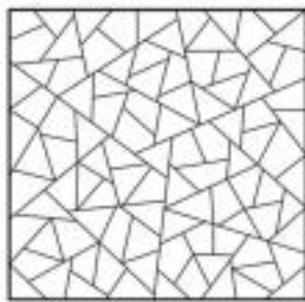
Rashaad Newsome Pulls Out All

His protean “Assembly,” at the Park Avenue Armory, bridges art, technology, performance, workshops — and offers an A.I. Being who will teach you how to vogue.

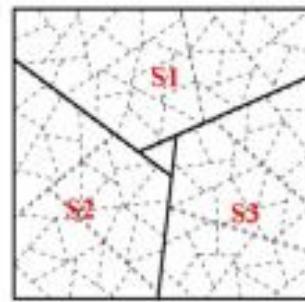
Source: [Rashaad Newsome](#), [Ron Eglash](#)



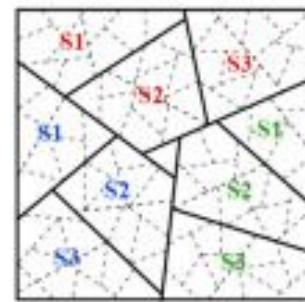
traditional cracked-ice lattice



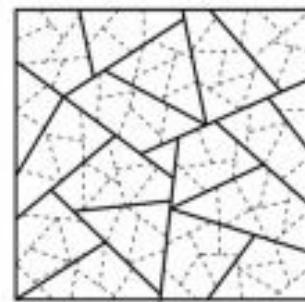
single-lines transformation



1st order segments

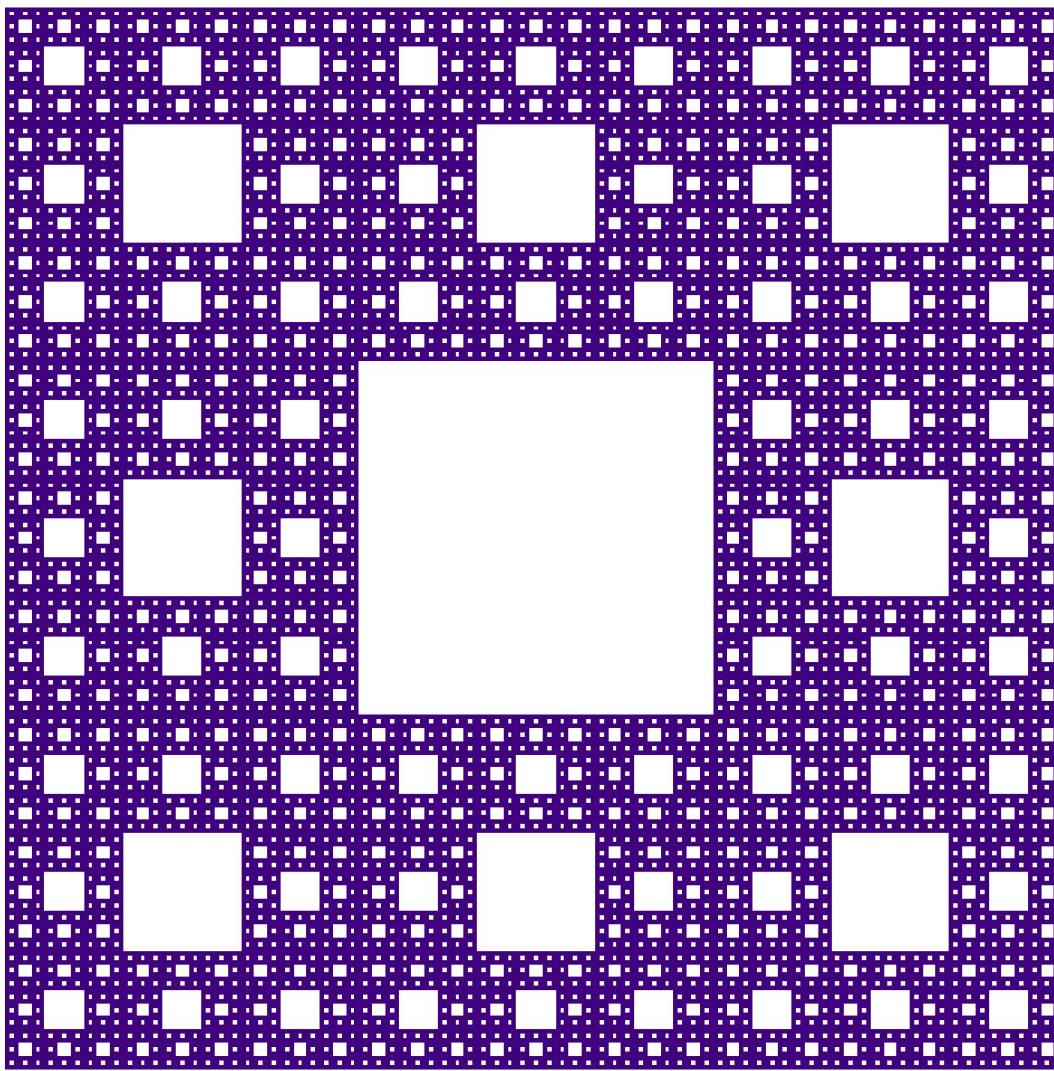


2nd order segments



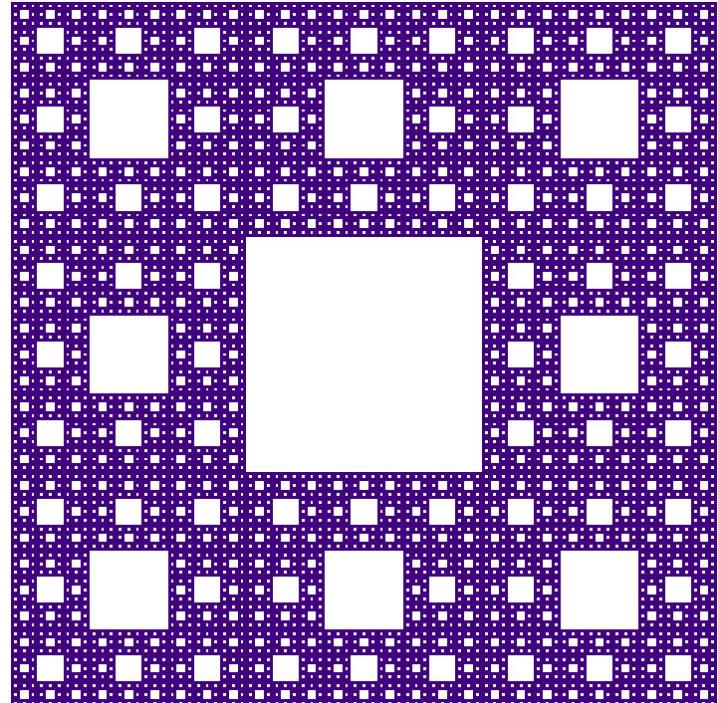
3rd order segments

Sierpinski Carpet example

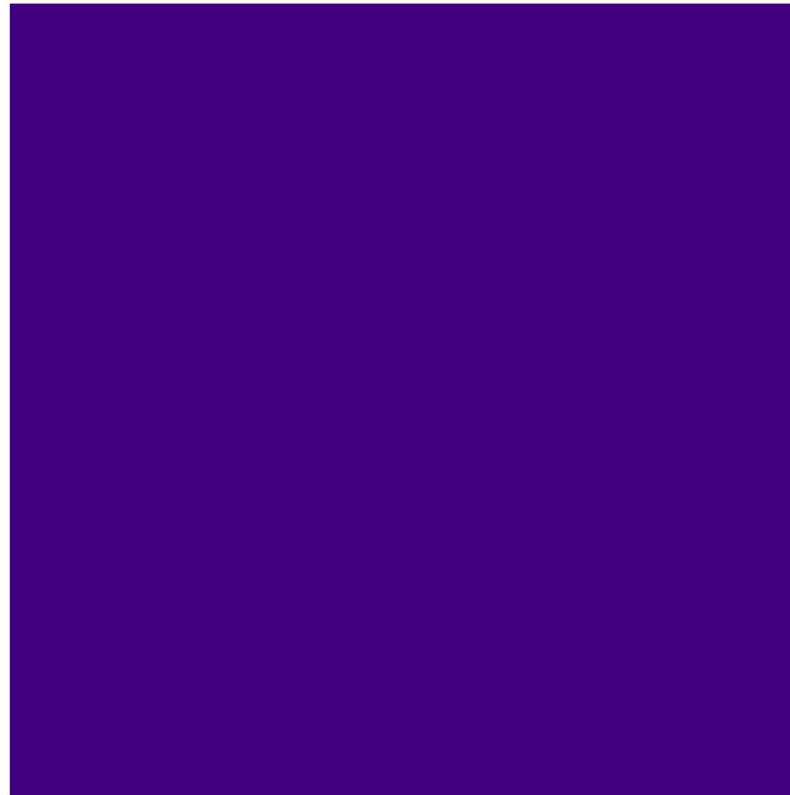


Sierpinski Carpet

- First described by Wacław Sierpiński in 1916
- A generalization of the Cantor Set to two dimensions!
- Defined by the subdivision of a shape (a square in this case) into smaller copies of itself.
 - The same pattern applied to a triangle yields a Sierpinski triangle, which you will code up on the next assignment.

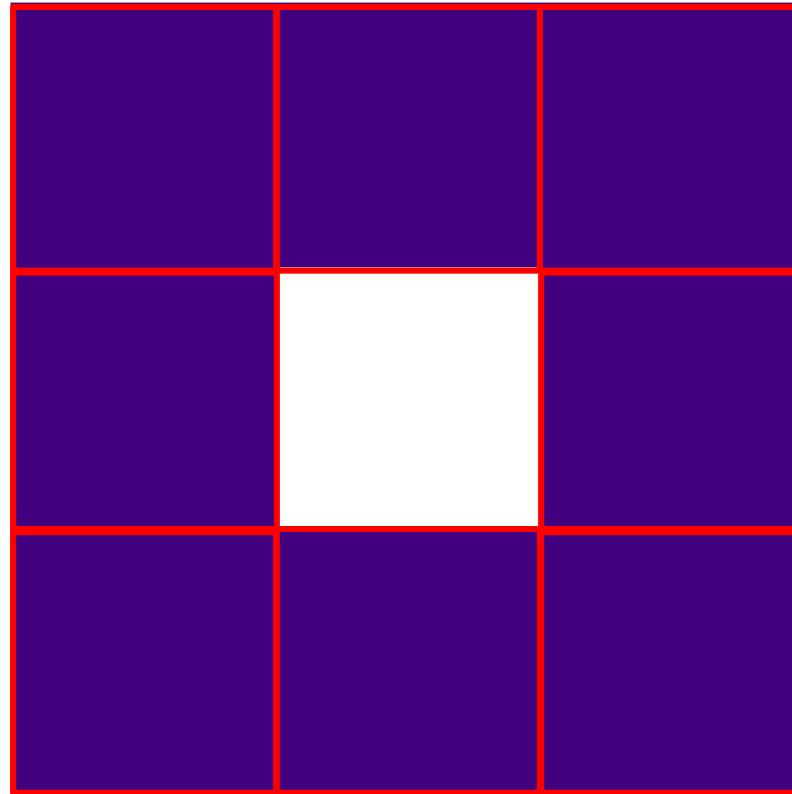


An order-0 Sierpinski Carpet

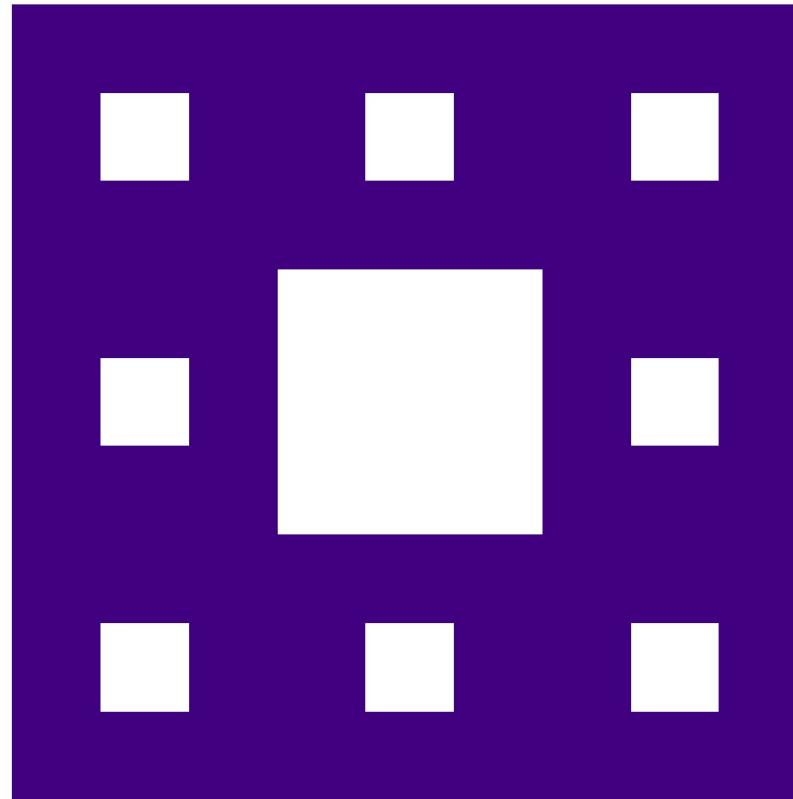


An order-1 Sierpinski Carpet

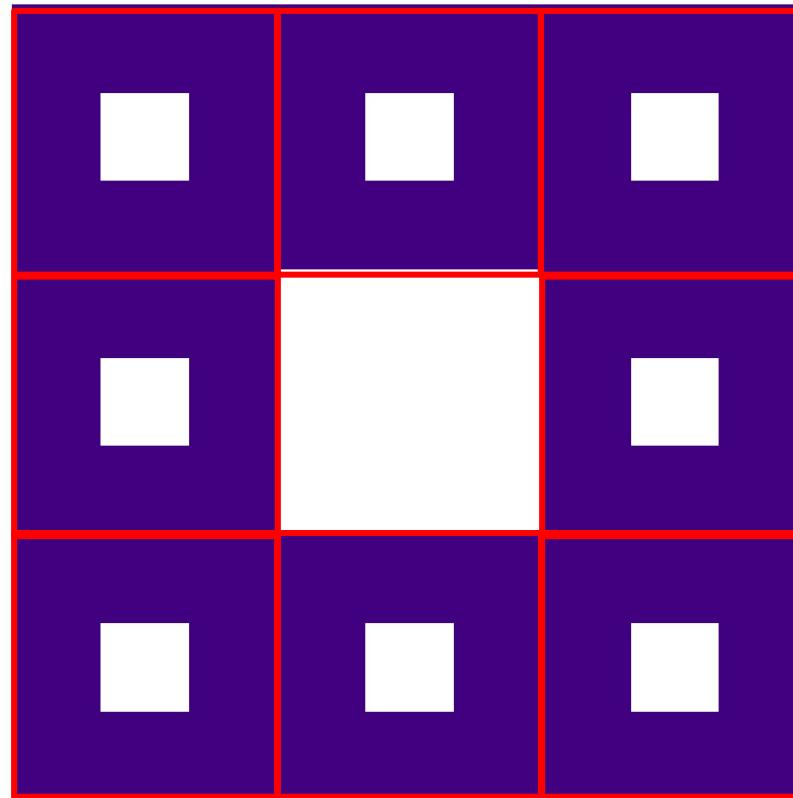
An order-1 carpet is subdivided into eight order-0 carpets arranged in this grid pattern



An order-2 Sierpinski Carpet



An order-2 Sierpinski Carpet

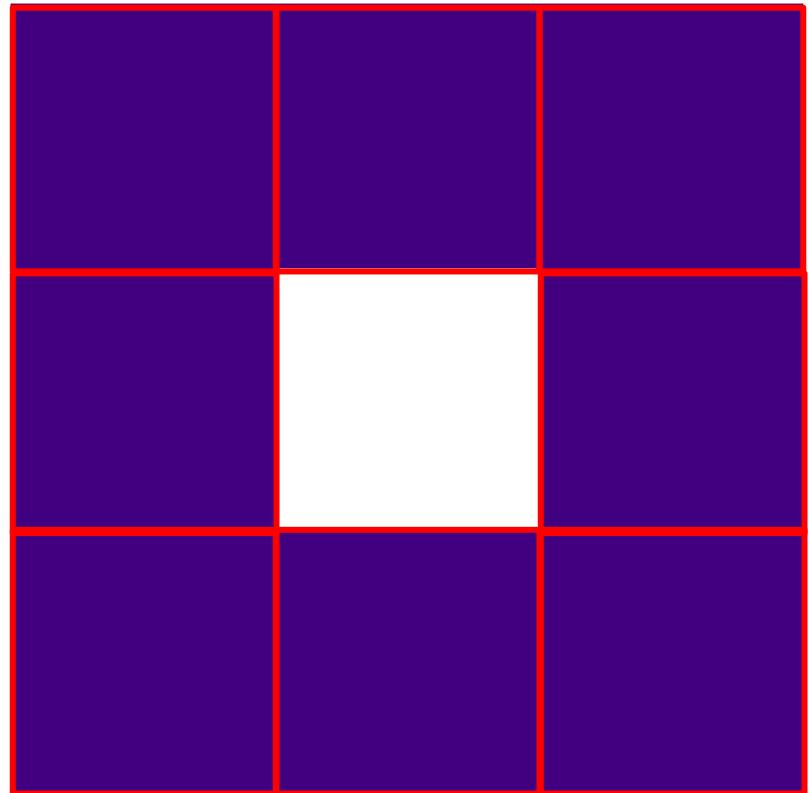


Sierpinski Carpet Formalized

- Base Case (order-0)
 - Draw a filled square at the appropriate location

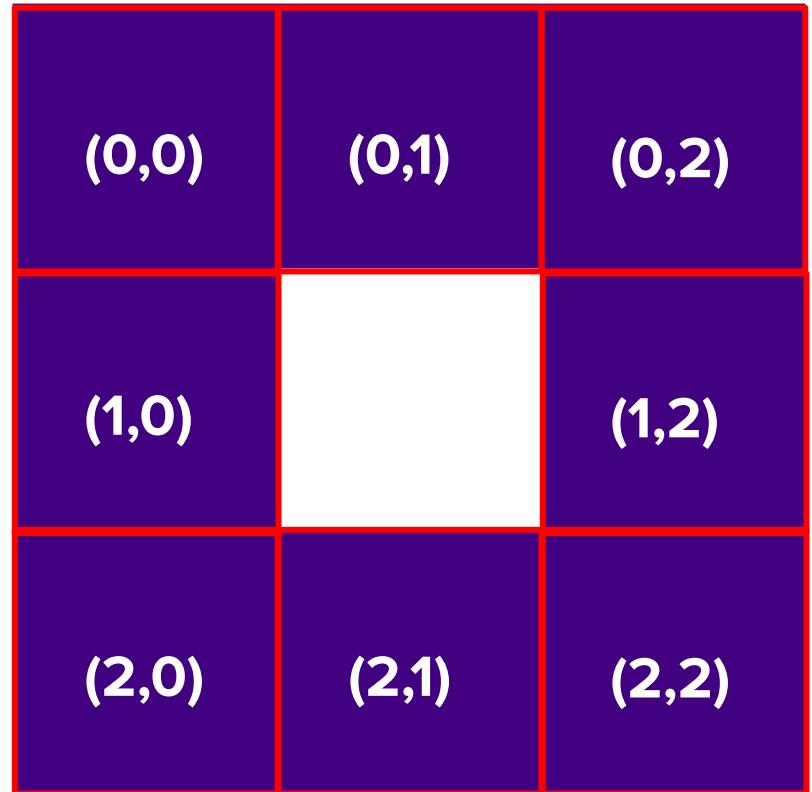
Sierpinski Carpet Formalized

- Base Case (order-0)
 - Draw a filled square at the appropriate location
- Recursive Case (order- n , $n \neq 0$)
 - Draw 8 order $n-1$ Sierpinski carpets, arranged in a 3×3 grid, omitting the center location



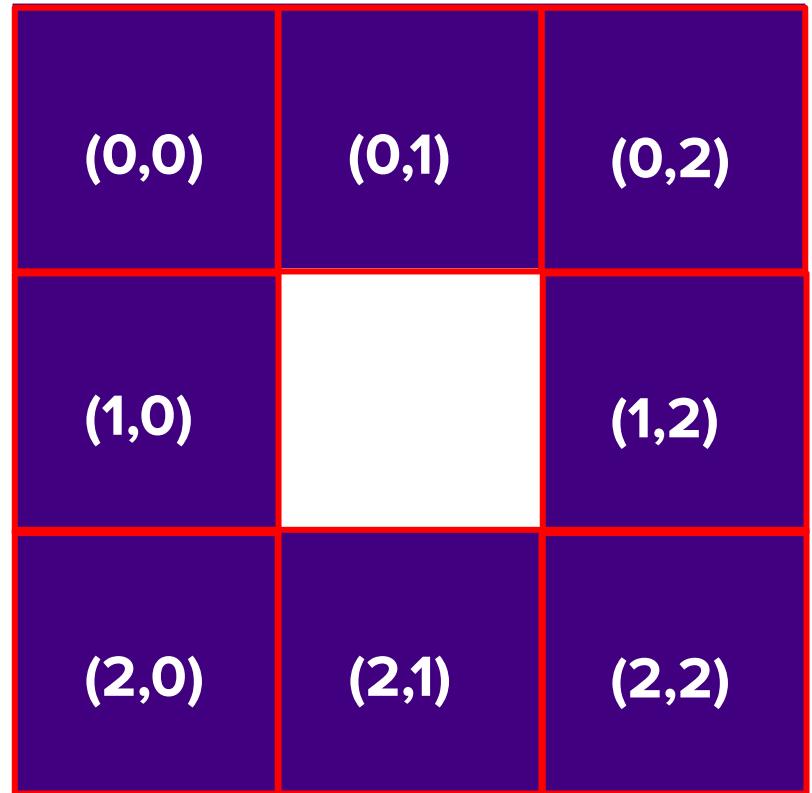
Sierpinski Carpet Formalized

- Base Case (order-0)
 - Draw a filled square at the appropriate location
- Recursive Case (order- n , $n \neq 0$)
 - Draw 8 order $n-1$ Sierpinski carpets, arranged in a 3×3 grid, omitting the center location



Sierpinski Carpet Formalized

- Base Case (order-0)
 - Draw a filled square at the appropriate location
- Recursive Case (order- n , $n \neq 0$)
 - Draw 8 order $n-1$ Sierpinski carpets, arranged in a 3×3 grid, omitting the center location
 - i.e. Draw an $n-1$ fractal at $(0,0)$, draw an $n-1$ fractal at $(0,1)$, draw an $n-1$ fractal at $(0,2)$...



Sierpinski Carpet Pseudocode (Take 1)

```
drawSierpinskiCarpet (x, y, order):  
    if (order == 0)  
        drawFilledSquare(x, y, BASE_SIZE)  
    else  
        drawSierpinskiCarpet (newX(x, y, 0, 0), newY(x, y, 0, 0), order -1)  
        drawSierpinskiCarpet (newX(x, y, 0, 1), newY(x, y, 0, 1), order -1)  
        drawSierpinskiCarpet (newX(x, y, 0, 2), newY(x, y, 0, 2), order -1)  
        drawSierpinskiCarpet (newX(x, y, 1, 0), newY(x, y, 1, 0), order -1)  
        drawSierpinskiCarpet (newX(x, y, 1, 2), newY(x, y, 1, 2), order -1)  
        drawSierpinskiCarpet (newX(x, y, 2, 0), newY(x, y, 2, 0), order -1)  
        drawSierpinskiCarpet (newX(x, y, 2, 1), newY(x, y, 2, 1), order -1)  
        drawSierpinskiCarpet (newX(x, y, 2, 2), newY(x, y, 2, 2), order -1)
```

Sierpinski Carpet Pseudocode (Take 1)

```
drawSierpinskiCarpet (x, y, order):  
    if (order == 0)  
        drawFilledSquare (x, y)  
    else  
        drawSierpinskiCarpet (x, y, order - 1)  
        drawSierpinskiCarpet (x + 1, y, order - 1)  
        drawSierpinskiCarpet (x + 2, y, order - 1)  
        drawSierpinskiCarpet (x, y + 1, order - 1)  
        drawSierpinskiCarpet (x + 2, y + 1, order - 1)  
        drawSierpinskiCarpet (x, y + 2, order - 1)  
        drawSierpinskiCarpet (x + 1, y + 2, order - 1)  
        drawSierpinskiCarpet (x + 2, y + 2, order - 1)
```

*This isn't very
pretty, can we do
better?*

Sierpinski Carpet Pseudocode (Take 2)

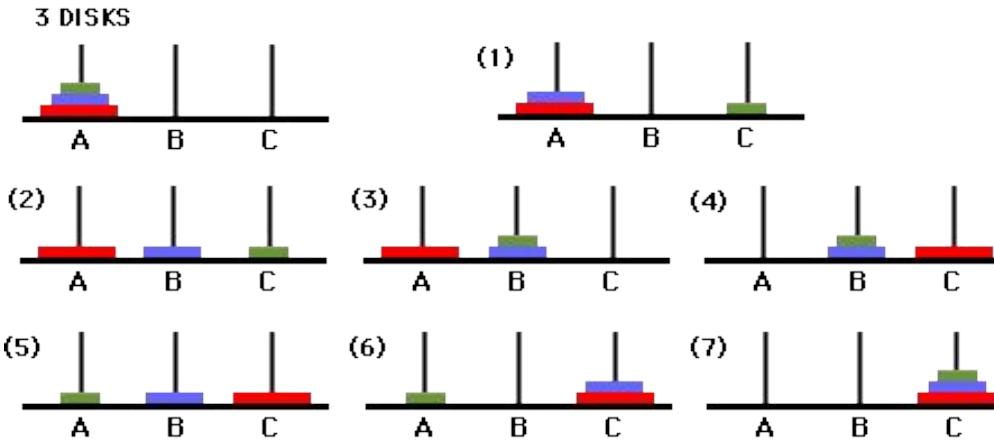
```
drawSierpinskiCarpet (x, y, order):  
    if (order == 0)  
        drawFilledSquare(x, y, BASE_SIZE)  
    else  
        for row = 0 to row = 2:  
            for col = 0 to col = 2:  
                if (col != 1 || row != 1):  
                    x_i = newX(x, y, row, col)  
                    y_i = newY(x ,y, row, col)  
                    drawSierpinskiCarpet(x_i, y_i, order - 1)
```


Iteration + Recursion

- It's completely reasonable to mix iteration and recursion in the same function.
- Here, we're firing off eight recursive calls, and the easiest way to do that is with a double for loop.
- Recursion doesn't mean "the absence of iteration." It just means "solving a problem by solving smaller copies of that same problem."
- Iteration and recursion can be very powerful in combination!

Revisiting the Towers of Hanoi

Pseudocode for 3 disks



- (1) Move disk 1 to destination
- (2) Move disk 2 to auxiliary
- (3) Move disk 1 to auxiliary
- (4) Move disk 3 to destination
- (5) Move disk 1 to source
- (6) Move disk 2 to destination
- (7) Move disk 1 to destination

Homework before tomorrow's lecture

- Play Towers of Hanoi:
<https://www.mathsisfun.com/games/towerofhanoi.html>
- Look for and write down patterns in how to solve the problem as you increase the number of disks. Try to get to at least 5 disks!
- **Extra challenge** (optional): How would you define this problem recursively?
 - Don't worry about data structures here. Assume we have a function `moveDisk(X, Y)` that will handle moving a disk from the top of post X to the top of post Y.

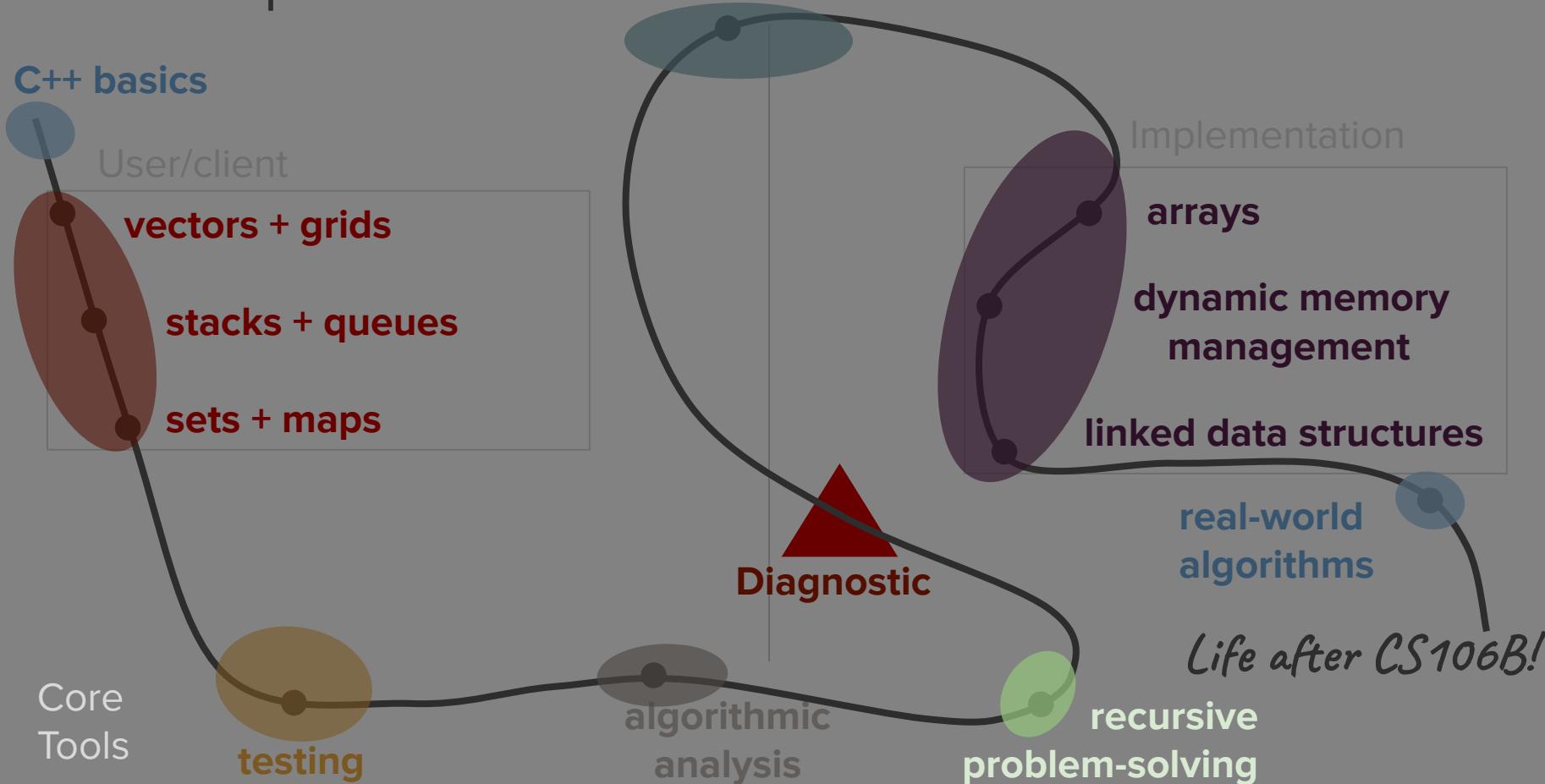
Fun Generative Art Links

- Take ARTSTUDI 163: “Drawing with Code”
- <https://p5js.org/> / <https://processing.org/>
- [The Coding Train youtube tutorials](#)
- <https://rashaadnewsome.com/>
- <https://csdt.org/culture/africanfractals/science.html>
- <http://recursivedrawing.com/>

What's next?

Roadmap

Object-Oriented Programming



Advanced Recursion Examples

