
Why We Use Recursion
If you haven’t played Towers of Hanoi yet (or even if 

you have), do that now!
mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html
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Today’s 
question

Why is recursion such a 
powerful problem-solving 
tool?



Today’s 
topics

1. Review

2. Elegance

3. Efficiency 
(the return of Big O)

4. Recursive Backtracking



Review
(fractals)



Self-Similarity

● Solving problems recursively and 
analyzing recursive phenomena 
involves identifying self-similarity 

● An object is self-similar if it contains 
a smaller copy of itself.



Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern, 
arranged in a structured way.



What differentiates the smaller tree from 
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar 
structures are often defined 
in terms of some parameter 
called the order, which 
indicates the complexity of 
the overall structure.

An order-3 tree
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.





Sierpinski Carpet Pseudocode (Take 2)

drawSierpinskiCarpet (x, y, order):
if (order == 0)

drawFilledSquare(x, y, BASE_SIZE)
else

for row = 0 to row = 2:
for col = 0 to col = 2:

if (col != 1 || row != 1):
x_i = newX(x, y, row, col)
y_i = newY(x ,y, row, col)
drawSierpinskiCarpet(x_i, y_i, order - 1)



Sierpinski Carpet
void drawSierpinskiCarpet(GWindow& window, double x, double y, double size, int order) {

   // Base case: A carpet of order 0 is a filled square.

   if (order == 0) {

       drawSquare(window, x, y, size);

   }  else {

       for (int row = 0; row < 3; row++) {

           for (int col = 0; col < 3; col++) {

               // The only square to skip is the very center one. 

               if (row != 1 || col != 1) {

                   double newX = x + col * size / 3;

                   double newY = y + row * size / 3;

                   drawSierpinskiCarpet(window, newX, newY, size / 3, order - 1);

               }

           }

       }

   }

}



Iteration + Recursion

● It’s completely reasonable to mix iteration and recursion in the same function.

● Here, we’re firing off eight recursive calls, and the easiest way to do that is with 
a double for loop.

● Recursion doesn’t mean “the absence of iteration.” It just means “solving a 
problem by solving smaller copies of that same problem.”

● Iteration and recursion can be very powerful in combination!



Homework from yesterday

● Play Towers of Hanoi: 
https://www.mathsisfun.com/games/towerofhanoi.html

● Look for and write down patterns in how to solve the problem as you 
increase the number of disks.  Try to get to at least 5 disks!

● Extra challenge (optional): How would you define this problem 
recursively?
○ Don’t worry about data structures here.  Assume we have a function moveDisk(X, Y) 

that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html


Why do we use recursion?



Why do we use recursion?

● Elegance
○ Allows us to solve problems with very clean and concise code

● Efficiency
○ Allows us to accomplish better runtimes when solving problems

● Dynamic
○ Allows us to solve problems that are hard to solve iteratively



An elegant example:
Towers of Hanoi



Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination



Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

What if we add a 
fourth disk?



Towers of Hanoi with 4 disks

    source        auxiliary destination



Towers of Hanoi with 4 disks

● We want to first move the biggest disk over to the destination peg.

    source        auxiliary destination



Towers of Hanoi with 4 disks

● We want to first move the biggest disk over to the destination peg.
○ We need to get the top three disks out of the way.

    source        auxiliary destination



Towers of Hanoi with 4 disks

    source        auxiliary destination

● We want to first move the biggest disk over to the destination peg.
○ We need to get the top three disks out of the way.
○ We already have an algorithm for moving three disks from a source peg to 

a destination peg!



Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Idea: Move disks to 
auxiliary instead of 

destination!



● We want to first move the biggest disk over to the destination peg.
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● We want to first move the biggest disk over to the destination peg.

Towers of Hanoi with 4 disks

    source        auxiliary destination



● We want to first move the biggest disk over to the destination peg.
● Now we need to move the stack of three from auxiliary to destination. 

Towers of Hanoi with 4 disks

    source        auxiliary destination



● We want to first move the biggest disk over to the destination peg.
● Now we need to move the stack of three from auxiliary to destination. 

Towers of Hanoi with 4 disks

    source        auxiliary destination

Use our 
existing 3-disk 

algorithm!



Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Idea: Move disks 
from auxiliary 

instead of source!



Discuss: How could we solve Towers of Hanoi recursively?

● Assume we have a function called moveSingleDisk(start, end) that moves 
a single disk from a start peg to a end peg.

● Our function prototype that we’re trying to fill in looks like this:
findSolution(n, source, dest, aux) 

Where n is the number of disks we have starting on the source peg. The goal 
is to have all disks end up on the dest peg, and you can use the aux peg to 
help.

● What are our base and recursive cases for this problem?



Towers of Hanoi 
solution
[live coding]



An efficient example:
Binary Search



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Where is 89?



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Idea #1: We could just go through each element 
in order and do a linear search.
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Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order 
and do a linear search.



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Linear search is  O(n)



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Can we do better? Can we take advantage of 
the structure of the data?



ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○  v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() 
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() –      ???
○ .remove() –   ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○  m[key] –     ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)
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– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
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● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() –      ???
○ .remove() –   ???
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○ traversal – O(n)

● Maps
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Note: Sets and Maps don’t actually use a sorted 
list to store information, but the general idea of 

searching sorted data is similar.



Note: Sets and Maps don’t actually use a sorted 
list to store information, but the general idea of 

searching sorted data is similar.

Remember how their elements/keys always 
printed out in alphabetical order?



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Where is 89?



Idea #2: Binary search

● Eliminate half of the data at each step.

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right 

half of the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left 

half of the data and repeat.
○ Otherwise, you’ve found your element!



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Where is 89?
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(startIndex + endIndex) / 2



Finding a number in a sorted list
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Start by looking at index:
(0 + 9) / 2



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Start by looking at index:
4
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(5 + 9) / 2 = 

7
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Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

(startIndex + endIndex) / 2 =
(8 + 9) / 2 = 

8



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

(startIndex + endIndex) / 2 =
(8 + 9) / 2 = 

8



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Success!



Defining binary search recursively

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right half of 

the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left half of the 

data and repeat.

○ Otherwise, you’ve found your element!
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○ If the middle element is bigger than your desired value, eliminate the right half of 

the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left half of the 

data and repeat.

○ Otherwise, you’ve found your element!

● Recursive cases
○ Element at middle is too small → binarySearch(right half of data)
○ Element at middle is too large → binarySearch(left half of data)



Defining binary search recursively

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right half of 

the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left half of the 

data and repeat.

○ Otherwise, you’ve found your element!

● Recursive cases
○ Element at middle is too small → binarySearch(right half of data)
○ Element at middle is too large → binarySearch(left half of data)

● Base cases
○ Element at middle == desired element
○ Desired element is not in your data



Discuss:
Read the code for 
binarySearch() and identify 
the base/recursive cases.



Attendance ticket:
https://tinyurl.com/binarySearchCases

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/binarySearchCases


Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
   if (startIndex > endIndex) {
       return -1;
   }

   int middleIndex = (startIndex + endIndex) / 2;
   int currentVal = v[middleIndex];
   if (targetVal == currentVal) {
       return middleIndex;
   } else if (targetVal < currentVal) {
       return binarySearch(v, targetVal, startIndex, middleIndex - 1);
   } else {
       return binarySearch(v, targetVal, middleIndex + 1, endIndex);
   }
}



Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
   if (startIndex > endIndex) {
       return -1;
   }

   int middleIndex = (startIndex + endIndex) / 2;
   int currentVal = v[middleIndex];
   if (targetVal == currentVal) {
       return middleIndex;
   } else if (targetVal < currentVal) {
       return binarySearch(v, targetVal, startIndex, middleIndex - 1);
   } else {
       return binarySearch(v, targetVal, middleIndex + 1, endIndex);
   }
}

Base cases



Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
   if (startIndex > endIndex) {
       return -1;
   }

   int middleIndex = (startIndex + endIndex) / 2;
   int currentVal = v[middleIndex];
   if (targetVal == currentVal) {
       return middleIndex;
   } else if (targetVal < currentVal) {
       return binarySearch(v, targetVal, startIndex, middleIndex - 1);
   } else {
       return binarySearch(v, targetVal, middleIndex + 1, endIndex);
   }
}

Recursive cases



Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
   if (startIndex > endIndex) {
       return -1;
   }

   int middleIndex = (startIndex + endIndex) / 2;
   int currentVal = v[middleIndex];
   if (targetVal == currentVal) {
       return middleIndex;
   } else if (targetVal < currentVal) {
       return binarySearch(v, targetVal, startIndex, middleIndex - 1);
   } else {
       return binarySearch(v, targetVal, middleIndex + 1, endIndex);
   }
}

We don’t want the user to have 
to pass these in, but we need 
them to update our search range



Binary search code

int binarySearch(Vector<int>& v, int targetVal) {

   return binarySearchHelper(v, targetVal, 0, v.size() - 1);

}

int binarySearchHelper(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
   ...
}

Use a recursive helper function for the extra parameters! 
(binarySearchHelper would have the same code as the previous slide)



Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

What’s the runtime?



Binary search runtime

● For data of size N, it eliminates half until 1 element remains:

N, N/2, N/4, N/8, ..., 4, 2, 1

○ How many divisions does it take?



Binary search runtime

● For data of size N, it eliminates half until 1 element remains.

● Think of it from the other direction:
○ How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

○ Call this number of multiplications x:

2x = N
x = log

2
N



Binary search runtime

● For data of size N, it eliminates half until 1 element remains.

● Think of it from the other direction:
○ How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

○ Call this number of multiplications x:

2x = N
x = log

2
N

● Binary search has logarithmic Big-O: O(log N)



binarysearch.cpp
[demo]



Logarithmic runtime

● Better than linear

● A common runtime 
when you’re able to
“divide and conquer”
in your algorithm, like
with binary search



ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○  v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols() 
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() –      ???
○ .remove() –   ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○  m[key] –     ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)
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● Maps
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Announcements

● Assignment 2 is due tonight at 11:59pm, and Assignment 1 revisions are due 
Sunday, July 10, at 11:59pm PDT.

● The midterm will be next Monday, July 11 during lecture. 
○ There will be a midterm review session tomorrow around noon.  Watch 

Ed for a finalized location and time!
○ Today’s content will only show up in the form of extra credit.

● Assignment 3, which is all about recursion, will be released after the midterm.

● Jenny will be rescheduling her individual OH next week.

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1228/assessments/1-midterm/


A dynamic example:
Exploring many 
possibilities



Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.
○ Depending on the problem, you could make the argument that one of the 

approaches was stylistically preferable or easier to understand.
○ But both got the job done!



Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.

● However, there is a whole class of problems that are very difficult, or nearly 
impossible, to solve with an iterative approach.
○ These problems have the goal of exploring many different possibilities or 

solutions.
○ Because iteration is inherently linear (and not dynamic), it is usually used 

to build up a single solution without exploring many possible alternatives.
○ Recursion allows us to explore many potential possibilities at once via the 

power of branching that comes when we have multiple recursive calls.



Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.

● However, there is a whole class of problems that are very difficult, or nearly 
impossible, to solve with an iterative approach.

● To solve these problems and generate many possible solutions, we will have to 
learn a new problem-solving technique called recursive backtracking.
○ The key steps in recursive backtracking are that you make a choice about 

how to generate a solution, you use recursion to explore that choice, and 
then you might make a different choice and repeat the process.

○ This paradigm is called “choose-explore-unchoose.”



Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.

● However, there is a whole class of problems that are very difficult, or nearly 
impossible, to solve with an iterative approach.

● To solve these problems and generate many possible solutions, we will have to 
learn a new problem-solving technique called recursive backtracking.

Let’s do an example!



Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain 
number of times in a row. Your success in the game depends on the exact 
sequence of "heads" and "tails" that you get. 
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Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain 
number of times in a row. Your success in the game depends on the exact 
sequence of "heads" and "tails" that you get. 

● In a different version of the game, you instead get three flips of the coin on 
your turn. What are all the possible ways that your turn could go?

How do we know that we got all the possibilities? How do we avoid repeats?
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Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain 
number of times in a row. Your success in the game depends on the exact 
sequence of "heads" and "tails" that you get. 

● Can we observe any patterns between the outcomes in the game with 2 flips 
and the outcomes in the game with 3 flips?
○ There is a self-similar tree-like relationship between the possible outcomes of 2 

flips and the possible outcomes of 3 flips.
○ The branching in the tree comes from deciding whether or not to add an H or a T to 

the existing sequence.
○ Together these branching sequences of decisions define a decision tree.
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Why decision trees?

● We've seen trees in the context of fractals (drawing pretty shapes), but now 
we're going to apply meaningful context to these trees.

● In problems where we care about many possible outcomes, decision trees can 
help illustrate the recursive backtracking strategy for generating outcomes.  
They model the options we can choose from and the “decisions” we make 
along the way.

● Let's create a visualization of the possible space of outcomes that could result 
from N coin flips. Each decision is one flip, and the options for a single flip are 
either heads or tails. 
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Example decision tree for N=2
Empty 
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails

Base case: when flipsLeft = 0 We reach the base case when we reach 
the leaves of our decision tree.

flipsLeft = 1

flipsLeft = 0
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Example decision tree for N=2
Empty 
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails

Recursive cases: add ‘H’ or ‘T’ to the 
sequence

The branching points in our tree. We’ll 
have a recursive call for each option.

flipsLeft = 1

flipsLeft = 0



Let’s code it!
void generateSequences(int length);
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Takeaways: recursive backtracking + decision trees
● Unlike our previous recursion paradigm in which a solution gets built up as 

recursive calls return, in backtracking our final outputs occur at our base cases 
(leaves) and get built up as we go down the decision tree.

● The height of the tree corresponds to the number of decisions we have to 
make. The width at each decision point corresponds to the number of 
options. 

● To exhaustively explore the entire search space, we must try every possible 
option for every possible decision. That can be a lot of paths to walk!
○ For the previous example, we have to make N decisions, with 2 choices for each decision. This 

means 2N total possible outcomes!



Summary



Why do we use recursion?

● Elegance
○ Allows us to solve problems with very clean and concise code

● Efficiency
○ Allows us to accomplish better runtimes when solving problems

● Dynamic
○ Allows us to solve problems that are hard to solve iteratively



Two types of recursion

Basic recursion

● One repeated task that builds up 
a solution as you come back up 
the call stack

● The final base case defines the 
initial seed of the solution and 
each call contributes a little bit to 
the solution

● Initial call to recursive function 
produces final solution

Backtracking recursion

● Build up many possible solutions 
through multiple recursive calls at 
each step

● Seed the initial recursive call with 
an “empty” solution

● At each base case, you have a 
potential solution



What’s next?



vectors + grids

    stacks + queues

    sets + maps

Object-Oriented 
Programming

      arrays

      dynamic memory    
        management

linked data structures

algorithmic 
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world 
algorithms

User/client
Implementation

recursive 
problem-solving

Core 
Tools



Recursive Backtracking


