
Why We Use Recursion
If you haven’t played Towers of Hanoi yet (or even if

you have), do that now!
mathsisfun.com/games/towerofhanoi.html

https://www.mathsisfun.com/games/towerofhanoi.html

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

recursive
problem-solving

Today’s
question

Why is recursion such a
powerful problem-solving
tool?

Today’s
topics

1. Review

2. Elegance

3. Efficiency
(the return of Big O)

4. Recursive Backtracking

Review
(fractals)

Self-Similarity

● Solving problems recursively and
analyzing recursive phenomena
involves identifying self-similarity

● An object is self-similar if it contains
a smaller copy of itself.

Fractals

● A fractal is any repeated, graphical pattern.

● A fractal is composed of repeated instances of the same shape or pattern,
arranged in a structured way.

What differentiates the smaller tree from
the bigger one?

1. It's at a different position.
2. It has a different size.
3. It has a different orientation.
4. It has a different order.

Fractals and self-similar
structures are often defined
in terms of some parameter
called the order, which
indicates the complexity of
the overall structure.

An order-3 tree
An order-0 tree is nothing at all.

An order-n tree is a line with two
smaller order-(n-1) trees starting
at the end of that line.

Sierpinski Carpet Pseudocode (Take 2)

drawSierpinskiCarpet (x, y, order):
if (order == 0)

drawFilledSquare(x, y, BASE_SIZE)
else

for row = 0 to row = 2:
for col = 0 to col = 2:

if (col != 1 || row != 1):
x_i = newX(x, y, row, col)
y_i = newY(x ,y, row, col)
drawSierpinskiCarpet(x_i, y_i, order - 1)

Sierpinski Carpet
void drawSierpinskiCarpet(GWindow& window, double x, double y, double size, int order) {

 // Base case: A carpet of order 0 is a filled square.

 if (order == 0) {

 drawSquare(window, x, y, size);

 } else {

 for (int row = 0; row < 3; row++) {

 for (int col = 0; col < 3; col++) {

 // The only square to skip is the very center one.

 if (row != 1 || col != 1) {

 double newX = x + col * size / 3;

 double newY = y + row * size / 3;

 drawSierpinskiCarpet(window, newX, newY, size / 3, order - 1);

 }

 }

 }

 }

}

Iteration + Recursion

● It’s completely reasonable to mix iteration and recursion in the same function.

● Here, we’re firing off eight recursive calls, and the easiest way to do that is with
a double for loop.

● Recursion doesn’t mean “the absence of iteration.” It just means “solving a
problem by solving smaller copies of that same problem.”

● Iteration and recursion can be very powerful in combination!

Homework from yesterday

● Play Towers of Hanoi:
https://www.mathsisfun.com/games/towerofhanoi.html

● Look for and write down patterns in how to solve the problem as you
increase the number of disks. Try to get to at least 5 disks!

● Extra challenge (optional): How would you define this problem
recursively?
○ Don’t worry about data structures here. Assume we have a function moveDisk(X, Y)

that will handle moving a disk from the top of post X to the top of post Y.

https://www.mathsisfun.com/games/towerofhanoi.html

Why do we use recursion?

Why do we use recursion?

● Elegance
○ Allows us to solve problems with very clean and concise code

● Efficiency
○ Allows us to accomplish better runtimes when solving problems

● Dynamic
○ Allows us to solve problems that are hard to solve iteratively

An elegant example:
Towers of Hanoi

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

What if we add a
fourth disk?

Towers of Hanoi with 4 disks

 source auxiliary destination

Towers of Hanoi with 4 disks

● We want to first move the biggest disk over to the destination peg.

 source auxiliary destination

Towers of Hanoi with 4 disks

● We want to first move the biggest disk over to the destination peg.
○ We need to get the top three disks out of the way.

 source auxiliary destination

Towers of Hanoi with 4 disks

 source auxiliary destination

● We want to first move the biggest disk over to the destination peg.
○ We need to get the top three disks out of the way.
○ We already have an algorithm for moving three disks from a source peg to

a destination peg!

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Idea: Move disks to
auxiliary instead of

destination!

● We want to first move the biggest disk over to the destination peg.

Towers of Hanoi with 4 disks

 source auxiliary destination

● We want to first move the biggest disk over to the destination peg.

Towers of Hanoi with 4 disks

 source auxiliary destination

● We want to first move the biggest disk over to the destination peg.
● Now we need to move the stack of three from auxiliary to destination.

Towers of Hanoi with 4 disks

 source auxiliary destination

● We want to first move the biggest disk over to the destination peg.
● Now we need to move the stack of three from auxiliary to destination.

Towers of Hanoi with 4 disks

 source auxiliary destination

Use our
existing 3-disk

algorithm!

Pseudocode for 3 disks

(1) Move disk 1 to destination
(2) Move disk 2 to auxiliary
(3) Move disk 1 to auxiliary
(4) Move disk 3 to destination

(5) Move disk 1 to source
(6) Move disk 2 to destination
(7) Move disk 1 to destination

Idea: Move disks
from auxiliary

instead of source!

Discuss: How could we solve Towers of Hanoi recursively?

● Assume we have a function called moveSingleDisk(start, end) that moves
a single disk from a start peg to a end peg.

● Our function prototype that we’re trying to fill in looks like this:
findSolution(n, source, dest, aux)

Where n is the number of disks we have starting on the source peg. The goal
is to have all disks end up on the dest peg, and you can use the aux peg to
help.

● What are our base and recursive cases for this problem?

Towers of Hanoi
solution
[live coding]

An efficient example:
Binary Search

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Where is 89?

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Idea #1: We could just go through each element
in order and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

We could just go through each element in order
and do a linear search.

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Linear search is O(n)

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Can we do better? Can we take advantage of
the structure of the data?

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

Note: Sets and Maps don’t actually use a sorted
list to store information, but the general idea of

searching sorted data is similar.

Note: Sets and Maps don’t actually use a sorted
list to store information, but the general idea of

searching sorted data is similar.

Remember how their elements/keys always
printed out in alphabetical order?

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Where is 89?

Idea #2: Binary search

● Eliminate half of the data at each step.

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right

half of the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left

half of the data and repeat.
○ Otherwise, you’ve found your element!

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Where is 89?

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Start by looking at index:
(startIndex + endIndex) / 2

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Start by looking at index:
(0 + 9) / 2

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Start by looking at index:
4

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Too small

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Eliminate left half

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

(startIndex + endIndex) / 2 =
(5 + 9) / 2 =

7

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

(startIndex + endIndex) / 2 =
(5 + 9) / 2 =

7

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Too small

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Eliminate left half

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

(startIndex + endIndex) / 2 =
(8 + 9) / 2 =

8

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

(startIndex + endIndex) / 2 =
(8 + 9) / 2 =

8

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

Success!

Defining binary search recursively

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right half of

the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left half of the

data and repeat.

○ Otherwise, you’ve found your element!

Defining binary search recursively

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right half of

the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left half of the

data and repeat.

○ Otherwise, you’ve found your element!

● Recursive cases
○ Element at middle is too small → binarySearch(right half of data)
○ Element at middle is too large → binarySearch(left half of data)

Defining binary search recursively

● Algorithm: Check the middle element at (startIndex + endIndex) / 2
○ If the middle element is bigger than your desired value, eliminate the right half of

the data and repeat.
○ If the middle element is smaller than your desired value, eliminate the left half of the

data and repeat.

○ Otherwise, you’ve found your element!

● Recursive cases
○ Element at middle is too small → binarySearch(right half of data)
○ Element at middle is too large → binarySearch(left half of data)

● Base cases
○ Element at middle == desired element
○ Desired element is not in your data

Discuss:
Read the code for
binarySearch() and identify
the base/recursive cases.

Attendance ticket:
https://tinyurl.com/binarySearchCases

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/binarySearchCases

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
 if (startIndex > endIndex) {
 return -1;
 }

 int middleIndex = (startIndex + endIndex) / 2;
 int currentVal = v[middleIndex];
 if (targetVal == currentVal) {
 return middleIndex;
 } else if (targetVal < currentVal) {
 return binarySearch(v, targetVal, startIndex, middleIndex - 1);
 } else {
 return binarySearch(v, targetVal, middleIndex + 1, endIndex);
 }
}

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
 if (startIndex > endIndex) {
 return -1;
 }

 int middleIndex = (startIndex + endIndex) / 2;
 int currentVal = v[middleIndex];
 if (targetVal == currentVal) {
 return middleIndex;
 } else if (targetVal < currentVal) {
 return binarySearch(v, targetVal, startIndex, middleIndex - 1);
 } else {
 return binarySearch(v, targetVal, middleIndex + 1, endIndex);
 }
}

Base cases

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
 if (startIndex > endIndex) {
 return -1;
 }

 int middleIndex = (startIndex + endIndex) / 2;
 int currentVal = v[middleIndex];
 if (targetVal == currentVal) {
 return middleIndex;
 } else if (targetVal < currentVal) {
 return binarySearch(v, targetVal, startIndex, middleIndex - 1);
 } else {
 return binarySearch(v, targetVal, middleIndex + 1, endIndex);
 }
}

Recursive cases

Binary search code

int binarySearch(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
 if (startIndex > endIndex) {
 return -1;
 }

 int middleIndex = (startIndex + endIndex) / 2;
 int currentVal = v[middleIndex];
 if (targetVal == currentVal) {
 return middleIndex;
 } else if (targetVal < currentVal) {
 return binarySearch(v, targetVal, startIndex, middleIndex - 1);
 } else {
 return binarySearch(v, targetVal, middleIndex + 1, endIndex);
 }
}

We don’t want the user to have
to pass these in, but we need
them to update our search range

Binary search code

int binarySearch(Vector<int>& v, int targetVal) {

 return binarySearchHelper(v, targetVal, 0, v.size() - 1);

}

int binarySearchHelper(Vector<int>& v, int targetVal, int startIndex, int endIndex) {
 ...
}

Use a recursive helper function for the extra parameters!
(binarySearchHelper would have the same code as the previous slide)

Finding a number in a sorted list

-1 2 5 18 37 59 77 82 89 101

0 1 2 3 4 5 6 7 8 9

What’s the runtime?

Binary search runtime

● For data of size N, it eliminates half until 1 element remains:

N, N/2, N/4, N/8, ..., 4, 2, 1

○ How many divisions does it take?

Binary search runtime

● For data of size N, it eliminates half until 1 element remains.

● Think of it from the other direction:
○ How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

○ Call this number of multiplications x:

2x = N
x = log

2
N

Binary search runtime

● For data of size N, it eliminates half until 1 element remains.

● Think of it from the other direction:
○ How many times do I have to multiply by 2 to reach N?

1, 2, 4, 8, ..., N/4, N/2, N

○ Call this number of multiplications x:

2x = N
x = log

2
N

● Binary search has logarithmic Big-O: O(log N)

binarysearch.cpp
[demo]

Logarithmic runtime

● Better than linear

● A common runtime
when you’re able to
“divide and conquer”
in your algorithm, like
with binary search

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – ???
○ .remove() – ???
○ .contains() – ???
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – ???
○ .contains() – ???
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

ADT Big-O Matrix

● Vectors
○ .size() – O(1)
○ .add() – O(1)
○ v[i] – O(1)
○ .insert() – O(n)
○ .remove() – O(n)
○ .clear() - O(n)
○ traversal – O(n)

● Grids
○ .numRows()/.numCols()
– O(1)

○ g[i][j] – O(1)
○ .inBounds() – O(1)
○ traversal – O(n2)

● Sets
○ .size() – O(1)
○ .isEmpty() – O(1)
○ .add() – O(log(n))
○ .remove() – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Maps
○ .size() – O(1)
○ .isEmpty() – O(1)
○ m[key] – O(log(n))
○ .contains() – O(log(n))
○ traversal – O(n)

● Queues
○ .size() – O(1)
○ .peek() – O(1)
○ .enqueue() – O(1)
○ .dequeue() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

● Stacks
○ .size() – O(1)
○ .peek() – O(1)
○ .push() – O(1)
○ .pop() – O(1)
○ .isEmpty() – O(1)
○ traversal – O(n)

Announcements

Announcements

● Assignment 2 is due tonight at 11:59pm, and Assignment 1 revisions are due
Sunday, July 10, at 11:59pm PDT.

● The midterm will be next Monday, July 11 during lecture.
○ There will be a midterm review session tomorrow around noon. Watch

Ed for a finalized location and time!
○ Today’s content will only show up in the form of extra credit.

● Assignment 3, which is all about recursion, will be released after the midterm.

● Jenny will be rescheduling her individual OH next week.

https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1228/assessments/1-midterm/

A dynamic example:
Exploring many
possibilities

Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.
○ Depending on the problem, you could make the argument that one of the

approaches was stylistically preferable or easier to understand.
○ But both got the job done!

Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.

● However, there is a whole class of problems that are very difficult, or nearly
impossible, to solve with an iterative approach.
○ These problems have the goal of exploring many different possibilities or

solutions.
○ Because iteration is inherently linear (and not dynamic), it is usually used

to build up a single solution without exploring many possible alternatives.
○ Recursion allows us to explore many potential possibilities at once via the

power of branching that comes when we have multiple recursive calls.

Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.

● However, there is a whole class of problems that are very difficult, or nearly
impossible, to solve with an iterative approach.

● To solve these problems and generate many possible solutions, we will have to
learn a new problem-solving technique called recursive backtracking.
○ The key steps in recursive backtracking are that you make a choice about

how to generate a solution, you use recursion to explore that choice, and
then you might make a different choice and repeat the process.

○ This paradigm is called “choose-explore-unchoose.”

Limits of iteration

● So far, we've seen problems that could be solved iteratively or recursively.

● However, there is a whole class of problems that are very difficult, or nearly
impossible, to solve with an iterative approach.

● To solve these problems and generate many possible solutions, we will have to
learn a new problem-solving technique called recursive backtracking.

Let’s do an example!

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH HT

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH HT TH

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In the first version of this game, you get 2 coin flips on your turn. What are all
the possible outcomes that you could get?

HH HT TH TT

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

HHH HHT HTH HTT THH THT TTH TTT

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● In a different version of the game, you instead get three flips of the coin on
your turn. What are all the possible ways that your turn could go?

How do we know that we got all the possibilities? How do we avoid repeats?

HHH HHT HTH HTT THH THT TTH TTT

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● Can we observe any patterns between the outcomes in the game with 2 flips
and the outcomes in the game with 3 flips?

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● Can we observe any patterns between the outcomes in the game with 2 flips
and the outcomes in the game with 3 flips?

HH HT TH TT
HHH HHT HTH HTT THH THT TTH TTT

Generating coin sequences

● Let's say that you're playing a game that involves flipping a coin a certain
number of times in a row. Your success in the game depends on the exact
sequence of "heads" and "tails" that you get.

● Can we observe any patterns between the outcomes in the game with 2 flips
and the outcomes in the game with 3 flips?
○ There is a self-similar tree-like relationship between the possible outcomes of 2

flips and the possible outcomes of 3 flips.
○ The branching in the tree comes from deciding whether or not to add an H or a T to

the existing sequence.
○ Together these branching sequences of decisions define a decision tree.

Why decision trees?

● We've seen trees in the context of fractals (drawing pretty shapes), but now
we're going to apply meaningful context to these trees.

Why decision trees?

● We've seen trees in the context of fractals (drawing pretty shapes), but now
we're going to apply meaningful context to these trees.

● In problems where we care about many possible outcomes, decision trees can
help illustrate the recursive backtracking strategy for generating outcomes.
They model the options we can choose from and the “decisions” we make
along the way.

Why decision trees?

● We've seen trees in the context of fractals (drawing pretty shapes), but now
we're going to apply meaningful context to these trees.

● In problems where we care about many possible outcomes, decision trees can
help illustrate the recursive backtracking strategy for generating outcomes.
They model the options we can choose from and the “decisions” we make
along the way.

● Let's create a visualization of the possible space of outcomes that could result
from N coin flips. Each decision is one flip, and the options for a single flip are
either heads or tails.

Example decision tree for N=2
Empty
sequence

Example decision tree for N=2
Empty
sequence

H

Flip heads

flipsLeft = 1

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

flipsLeft = 1

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH

Flip heads
flipsLeft = 1

flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT

Flip heads Flip tails
flipsLeft = 1

flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT TH

Flip heads Flip headsFlip tails
flipsLeft = 1

flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails
flipsLeft = 1

flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails
flipsLeft = 1

flipsLeft = 0

Base case: when flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails

Base case: when flipsLeft = 0 We reach the base case when we reach
the leaves of our decision tree.

flipsLeft = 1

flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails

Recursive cases: add ‘H’ or ‘T’ to the
sequence

flipsLeft = 1

flipsLeft = 0

Example decision tree for N=2
Empty
sequence

H

Flip heads

T

Flip tails

HH HT TH TT

Flip heads Flip heads Flip tailsFlip tails

Recursive cases: add ‘H’ or ‘T’ to the
sequence

The branching points in our tree. We’ll
have a recursive call for each option.

flipsLeft = 1

flipsLeft = 0

Let’s code it!
void generateSequences(int length);

Takeaways: recursive backtracking + decision trees
● Unlike our previous recursion paradigm in which a solution gets built up as

recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

Takeaways: recursive backtracking + decision trees
● Unlike our previous recursion paradigm in which a solution gets built up as

recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

● The height of the tree corresponds to the number of decisions we have to
make. The width at each decision point corresponds to the number of
options.

Takeaways: recursive backtracking + decision trees
● Unlike our previous recursion paradigm in which a solution gets built up as

recursive calls return, in backtracking our final outputs occur at our base cases
(leaves) and get built up as we go down the decision tree.

● The height of the tree corresponds to the number of decisions we have to
make. The width at each decision point corresponds to the number of
options.

● To exhaustively explore the entire search space, we must try every possible
option for every possible decision. That can be a lot of paths to walk!
○ For the previous example, we have to make N decisions, with 2 choices for each decision. This

means 2N total possible outcomes!

Summary

Why do we use recursion?

● Elegance
○ Allows us to solve problems with very clean and concise code

● Efficiency
○ Allows us to accomplish better runtimes when solving problems

● Dynamic
○ Allows us to solve problems that are hard to solve iteratively

Two types of recursion

Basic recursion

● One repeated task that builds up
a solution as you come back up
the call stack

● The final base case defines the
initial seed of the solution and
each call contributes a little bit to
the solution

● Initial call to recursive function
produces final solution

Backtracking recursion

● Build up many possible solutions
through multiple recursive calls at
each step

● Seed the initial recursive call with
an “empty” solution

● At each base case, you have a
potential solution

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

User/client
Implementation

recursive
problem-solving

Core
Tools

Recursive Backtracking

