Recursive Backtracking
Revisited
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topics

Review + Subsets

Recursive backtracking
strategies

Practice applying strategies
a. Making combinations
b. Solving mazes with DFS

. A brief intro to optimization

(if time)




Review

(intro to recursive backtracking)



Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e Initial call to recursive function e Common pattern:
produces final solution choose/explore/unchoose



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists
o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

O O O O



Word Scramble:
Finding all permutations



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can find one specific solution to a problem or prove that one exists
o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,
including

o Generating subsets
o Generating combinations
o  And many, many more



Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"




Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Remember:
choose/explore/unchoose!
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Decisions yet to be made
Decisions made so far

Decision tree: Find all permutations of "cat"

Unchoose




What defines our permutations decision tree?

e Decision at each step (each level of the tree):
o What is the next letter that is going to get added to the permutation?

e Options at each decision (branches from each node):

o One option for every remaining element that hasn't been selected yet

e Information we need to store along the way:
o The permutation you've built so far
o The remaining elements in the original sequence



void listPermutationsHelper(string remaining, string soFar) {
// base case: if no letters remaining, then we're done
1f (remaining == "") {
cout << soFar << endl;
}
// recursive case: for every letter, append to soFar and then recurse
else {
for (int 1 = 2; 1 < remaining.length(); 1++) {
char currentLetter = remaining[i];
string rest = remaining.substr(?, i) + remaining.substr(i+l);
listPermutationsHelper(rest, soFar + currentLetter);

}

void listPermutations(string s){
/% TODO: Fill in this function! */
listPermutationsHelper(s, "");



Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied to generate permutation can be
thought of as

o  We make new copies of the remaining and soFar strings every time we recurse.
o  We’re going to see a different method of doing choose/explore/unchoose when we work with
ADTs and don’t want to make lots of copies.




Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied to generate permutation can be
thought of as

e At each step of the recursive backtracking process, it is important to keep
track of and

o  We created a helper function that had parameters for the remaining and soFar strings.
o Calling the helper function with an initial empty parameter that gets built up (soFar) will be a
common technique for recursive backtracking.



Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied to generate permutation can be
thought of as

e At each step of the recursive backtracking process, it is important to keep
track of and

e Backtracking recursion can have at each level
o  The number of branches in our tree at each level depended on how many letters we had left.
o We combined iteration and recursion to help us make the right number of recursive calls.



Takeaways

e The specific model of the general pattern in
backtracking recursion that we applied to generate permutation can be
thought of as

e At each step of the recursive backtracking process, it is important to keep

track of and

e Backtracking recursion can have at each level



Shrinkable Words:
Seeing if a solution exists



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem

o  We can find the best possible solution to a given problem
e There are many, many examples of specific problems that we can solve,

including...

o  Generating permutations
o Generating subsets
o Generating combinations



What defines our shrinkable decision tree?
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What defines our shrinkable decision tree?

e Decision at each step (each level of the tree):
o What letter are going to remove?

e Options at each decision (branches from each node):
o The remaining letters in the string

e Information we need to store along the way:
o The shrinking string



bool isShrinkable(Lexicon& lex, string word) {
/* TODO: Fill in isShrinkable function! */
// base case:
// 1) if not valid english word, return false
// 2) if single letter word, return true
1f (!lex.contains(word)) {
return false;
}
1f (word.length() == 1) {
return true;
}
// recursive case:
// try removing each letter one at a time
// 1f we find a shrinkable word recursively, return true
// 1f we find nothing at all, return false
for (int 1 = 2; 1 < word.length(); i++) {
string remainingWord = word.substr(®, i) + word.substr(i + 1);
1f (isShrinkable(lex, remainingWord)) {
return true;
H
}

return false;




Takeaways

e This is another example of with
at each level!




Takeaways

e This is another example of with
at each level!

e In this problem, we’re using backtracking to
o Notice the way the recursive case is structured:

for all options at each decision point:
1f recursive call returns true:
return true;
return false i1f all options are exhausted;



Takeaways

e This is another example of with
at each level!

e In this problem, we’re using backtracking to

e We because we don’t need to keep track of the
letters we removed, only the ones we have left.




Takeaways

e This is another example of with
at each level!

e In this problem, we’re using backtracking to

e We because we don’t need to keep track of the
letters we removed, only the ones we have left.

e Because we stop as soon as a word isn’t valid or shrinkable, we have
(in addition to multiple recursive calls).



Making teams:
Generating all possible
subsets



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can find one specific solution to a problem or prove that one exists
o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including
o  Generating permutations

o Generating combinations
o  And many, many more



Subsets (for grading the midterm)

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{"Nick”} Awnother cace of
E:ﬁ(i:i;} ‘9enerate/count all
{“Nick”, “Kylie”} colutions” ucing recurcive
{“Nick”, “Trip”} backtracking!

{fnylie’,, f"Tr\ip,,}
{“NiCk,’, CCKylie.’J’ CCTripJ’}




Subsets (cont.)



Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”’}

{“Kylie”}

{“Trip”} We wnoticed a patftera...
{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”’}




Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{“Kylie”} Half the cvbgeets contain
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}
{ﬂ'JennyJ)}

{*Kylie”} Half the svbeets contain

“TF;P ”
{“Jenny”, “Kylie”}




Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:
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Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny,,} -

{*Kylie”} -y

{“Trip”} By
E

{“Jenny”, “Kylie”}
{“Jenny”, “Trip”}
{“Kylie”, “Trip”}
{“Jenny”, “Kylie”, “Trip”’}




What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?
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o Include element
o Don’tinclude element




What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element
o Don’tinclude element

e Information we need to store along the way:

o The set you've built so far
o The remaining elements in the original set



Decision tree

Empty set




Decision tree

Don’t include Jenny

'

Empty set

Include Jenny

1




Decision tree

Don’t include Jenny

'

Empty set

Include Jenny

No Kylie

Kylie




Decision tree

Don’t include Jenny

'

Empty set

Include Jenny

No Kylie




Decision tree

Don’t include Jenny

'

No Kylie

Kylie

No Trip Trip

Empty set

Include Jenny

No Trip

No Kylie

Trip

No Trip ﬁa Trip




What defines our subsets decision tree?

e Decision at each step (each level of the tree):
o Are we going to include a given element in our subset?

e Options at each decision (branches from each node):
o Include element

o Don’tinclude element

e Information we need to store along the way:
o The set you've built so far



Decision tree

Don’tinclude Jenny | Empty set Include Jenny Remaining: {“Jenny”, “ Kylie”, “Trip”]

! !

No Kylie Kylie No Kylie n Kylie

No Trip mi No Trip ‘a Trig‘ No Tri n TriE‘ No Trij TriE‘




Decision tree

Don’tinclude Jenny | Empty set Include Jenny Remaining: {“Jenny”, “ Kylie”, “Trip”]

! !

No Kylie Kyie No Kylie n Ktie Remaining: {“Kylie”, “Trip”}

No Trip mi No Trip ‘a TriE‘ No Trip n TriE‘ No Trij TriE‘




Decision tree

Don’tinclude Jenny | Empty set Include Jenny Remaining: {“Jenny”, “ Kylie”, “Trip”]

! !

No Kylie Kyie No Kylie n Ktie Remaining: {“Kylie”, “Trip”}

N«rmL 21 NofL ‘a 21 NorTrig n 31 No Tri Ei Remaining:{“Trip”}
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Decision tree

Don’tinclude Jenny | Empty set Include Jenny Remaining: {“Jenny”, “ Kylie”, “Trip”]

! !

No Kylie Kyie No Kylie n Ktie Remaining: {“Kylie”, “Trip”}

Nlr_L _1 l_L L1 Nng & 7_1 No T Li Remaining: {“Trip”}
SRR "

R Ew B | Remaining: {}

: No people remaining to choose from!




Decision tree

Don’tinclude Jenny | Empty set Include Jenny Remaining: {“Jenny”, “ Kylie”, “Trip”]

! !

No Kylie Kyie No Kylie n Ktie Remaining: {“Kylie”, “Trip”}

N«rmL 21 NofL 21 No Tri n 21 No Tri 31 Remaining:{“Trip”}
B || "

R Ew B | Remaining: {}

: Pick someone in the set. Choose to

include or not include them.




Let’s code it!



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!




Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
C'Aoax'e listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!
string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
éagpﬁgke listSubsetsHelper(remaining, chosen); // do not add elem to chosen
[ f’ } chosen = chosen + elem;
par 7 listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing

them!
string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
éagpﬁgke listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
6ba]7‘2j listSubsetsHelper(remaining, chosen); // cdd clem to chosen

chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
// remove this element from possible choices
remaining = remaining - elem;
é;gpﬁbit listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;
listSubsetsHelper(remaining, chosen); // add elem to chosen
[;’.e. ahda} chosen = chosen - elem;
// add this element back to possible choices
remaining = remaining + elem;

(nchooce



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

string elem = remaining.first();
) , // remove this element from possible choices

Without this remaining = remaining - elem;

g’te,b, we could listSubsetsHelper(remaining, chosen); // do not add elem to chosen
chosen = chosen + elem;

not ex/b/ore the listSubsetsHelper(remaining, chosen); // add elem to chosen

other ¢ide af chosen = chosen - elem;
// add this element back to possible choices

the f"ee remaining = remaining + elem;



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing
them!

e Note the difference in the options at each step in this problem vs. the previous
two.
o It’s also important to keep in mind what information you have to keep
track of with each recursive call. This might help you define your base
case (e.g. having an empty remaining set).



Takeaways

e This is our first time seeing an explicit “unchoose” step
o This is necessary because we’re passing sets by reference and editing them!

e Note the difference in the options at each step in this problem vs. the previous

two.
O It’s also important to keep in mind what information you have to keep track of with
each recursive call. This might help you define your base case (e.g. having an
empty remaining set).

e This was our first example using ADTs with recursion, and we’ll see more
today!



Backtracking recursion: Exploring many possible solutions

Two methods of choose/explore/unchoose

e Choose explore undo
o Uses pass by reference; usually with large data structures
o Explicit unchoose step by "undoing" prior modifications to structure
o E.g. Generating subsets (one set passed around by reference to track
subsets)

e Copy edit explore
o Pass by value; usually when memory constraints aren’t an issue
o Implicit unchoose step by virtue of making edits to copy
o E.g. Building up a string over time



Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking

e Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with (enumeration)

large data structures

o Explicit unchoose step by "undoing" 2. Find one solution (or prove
prior modifications to structure .

o E.g. Generating subsets (one set eX|Stence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore

o Pass by value; usually when memory

constraints aren’t an issue

General examples of things you can do:
- Permutations

o Implicit unchoose step by virtue of - Subsets
making edits to copy - Combinations
o E.g. Building up a string over time - etc.



What process should we use to
solve recursive backtracking
problems?



Solving backtracking recursion problems

e Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)
e What are we building up as our “many possibilities” in order to find our solution?

e What’s the provided function prototype and requirements? Do we need a helper function?
o  What are we returning as our solution?
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful?

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Solving backtracking recursion problems

e Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)

e What are we building up as our “many possibilities” in order to find our solution? (subsets,
permutations, or something else)

e What’s the provided function prototype and requirements? Do we need a helper function?
o What are we returning as our solution? (a boolean, void but printing out a string or ADT)
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful? (sets, strings)

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Combinations



Creating fixed-size teams:
Generating all possible
combinations



Subsets vs. Combinations

e Our goal: We want to pick a combination of 5 graders out of a group of 8.
o More useful than our generating subsets solution!
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— these 5 graders would be a subset of the overall group of 8.
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e Our goal: We want to pick a combination of 5 graders out of a group of 8.

e This sounds very similar to the problem we solved when we generated subsets
— these 5 graders would be a subset of the overall group of 8.

e What distinguishes a combination from a subset?
o Combinations always have a specified unlike subsets (which can be any size)
o We can think of combinations as




Subsets vs. Combinations

e Our goal: We want to pick a combination of 5 graders out of a group of 8.

e This sounds very similar to the problem we solved when we generated subsets
— these 5 graders would be a subset of the overall group of 8.

e What distinguishes a combination from a subset?
o Combinations always have a specified unlike subsets (which can be any size)
o We can think of combinations as

e Could we use the code from before, generate all subsets, and then filter out all

those of size 57
o We could, but that would be inefficient. Let's develop a better approach for combinations!



How do we approach this
problem?



Solving backtracking recursion problems

e Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)
e What are we building up as our “many possibilities” in order to find our solution?

e What’s the provided function prototype and requirements? Do we need a helper function?
o  What are we returning as our solution?
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful?

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Solving backtracking recursion problems

e  Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)
e What are we building up as our “many possibilities” in order to find our solution?




Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists
o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

Generating permutations
Generating subsets
Generating combinations
And many, many more

O O O O



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using
backtracking recursion:

o We can find one specific solution to a problem or prove that one exists
o  We can find the best possible solution to a given problem

e There are many, many examples of specific problems that we can solve,

including

o  Generating permutations
o Generating subsets

o  And many, many more



Solving backtracking recursion problems

e What'’s the provided function prototype and requirements? Do we need a helper function?
o What are we returning as our solution?
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful?




What are we returning as our solution?

e Each combination of k graders can be represented as a Set<string>.

® |n our string examples, we were content with just printing out all solutions. But
what if we wanted to store all of them to be able to do something with them

later?

e We want to return a container holding all possible combinations:

Set<Set<string>>

Ite not that vnusual to see containers nected thic way./



What are we returning as our solution?

e Each combination of k graders can be represented as a Set<string>.

® |n our string examples, we were content with just printing out all solutions. But
what if we wanted to store all of them to be able to do something with them
later?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)



Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)




Attendance ticket:
https://tinyurl.com/combinationsHelper

Please don’t send this link to students who are not here. It’s on your honor!


https://tinyurl.com/combinationsHelper

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)




Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

We’ll need to keep track of a current set of graders as we’re building up each
possible set of strings. (We need a helperl!)




Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

We’ll need to keep track of a current set of graders as we’re building up each
possible set of strings. (We need a helperl!)

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, Set<string>&
chosen)



Solving backtracking recursion problems

An exercise for you to try at home!

(solution is in the lecture code)

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



Announcements



Announcements

e Assignment 3 is due next Tuesday at 11:59pm PDT. The grace period ends
Wednesday at 11:59pm PDT.

e Assignment 2 revisions will be due Friday, July 22 at 11:59pm PDT.

e The final project criteria have been released!
o Please read through the entire page on the course website.
o The timeline is suggested but there are three required milestones:
m Project proposal: Sunday, July 24
m Project write-up: Sunday, August 7
m  Project presentations: August 11-14



Revisiting mazes



Solving mazes with breadth-first search (BFS)



https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview

Solving mazes with breadth-first search (BFS)

Can we do it recursively?




How do we approach this
problem?



Solving backtracking recursion problems

e  Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)
e What are we building up as our “many possibilities” in order to find our solution?




Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem

o  We can find the best possible solution to a given problem
e There are many, many examples of specific problems that we can solve,

including

o  Generating permutations
o Generating subsets
o Generating combinations



Solving backtracking recursion problems

e What'’s the provided function prototype and requirements? Do we need a helper function?
o What are we returning as our solution?
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful?
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e Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)
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e Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

e We need a helper function to keep track of our path through the maze!
o Our helper function will have as parameters: the maze itself and the path we’re building up.
o  We also want the helper to be able to tell us whether or not the maze is solvable — let’s have it
return a boolean.




Do we need a helper function?

e Recall our solveMaze prototype:
Stack<GridLocation> solveMaze(Grid<bool>& maze)

e We need a helper function to keep track of our path through the maze!

bool solveMazeHelper(Grid<bool>& maze,
Stack<GridLocation>& path)




Solving backtracking recursion problems

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?



A recursive algorithm for solving mazes

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we're at the end of the maze
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A recursive algorithm for solving mazes

e Start at the entrance
e Take one step North, South, East, or West
e Repeat until we’re at the end of the maze

End of the maze!

- finish




A recursive algorithm for solving mazes

e Base case: If we're at the end of the maze, stop
e Recursive case: Explore North, South, East, then West

- finish




What defines our maze decision tree?

e Decision at each step (each level of the tree):
o  Which valid move will we take?

e Options at each decision (branches from each node):
o All valid moves (in bounds, not a wall, not previously visited) that are either
North, South, East, or West of the current location

e Information we need to store along the way:
o The path we’ve taken so far (a Stack we’re building up)
o Where we’ve already visited
o Our current location
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o Which valid move will we take? Draw the decicion tree.

e Options at each decision (branches from each node):
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What defines our maze decision tree?

e Decision at each step (each level of the tree):
o  Which valid move will we take?

e Options at each decision (branches from each node):
o All valid moves (in bounds, not a wall, not previously visited) that are either
North, South, East, or West of the current location

e Information we need to store along the way:

o The path we’ve taken so far (a Stack we’re building up)
o Where we’ve already visited



We need to make an adjustment!

e Recall our solveMaze prototype:
Stack<GridLocation> solveMaze(Grid<bool>& maze)
e We need a helper function to keep track of our path through the maze!

bool solveMazeHelper(Grid<bool>& maze,
Stack<GridLocation>& path,

)



Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.
o ldea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) = This works with our existing generateValidMoves () function
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o If any recursive call returns true, we have a solution
o If all fail, return false



Pseudocode

e Our helper function will have as parameters: the maze itself, the path we’re building up,
and the current location.
o ldea: Use the boolean Grid (the maze itself) to store information about whether or
not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) = This works with our existing generateValidMoves () function

e Recursive case: lterate over valid moves from generateValidMoves () and try adding
them to our path
o If any recursive call returns true, we have a solution
o If all fail, return false

e Base case: We can stop exploring when we’ve reached the exit » return true if the
current location is the exit



Let’s code it!



Takeaways

e Recursive maze-solving uses choose/explore/undo because we have to
explicitly “unchoose” by setting cells back to true after trying them.

e Our helper function may have a different return type from our initial function
prototype, and our wrapper function (not the helper) may be more complex
than just a call to our helper function.

e |t may be helpful to revisit and adjust our initial answers to our planning

questions as we determine more about the algorithm we want to use (e.g.
adding a parameter to our helper function).



Recursion is depth-first search
(DFS)!




BFS vs. DFS comparison Which do you think will be faster?



https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

BFS vs. DFS comparison

e BFS is typically iterative while DFS is naturally expressed recursively.

e Although DFS is faster in this particular case, which search strategy to use
depends on the problem you’re solving.

e BFS looks at all paths of a particular length before moving on to longer paths,
so it’s guaranteed to find the shortest path (e.g. word ladder)!

e DFS doesn’t need to store all partial paths along the way, so it has a smaller
memory footprint than BFS does.



Recursive Optimization

(a brief intro)



"Hard" Problems
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ways to generate the best solution to the problem. The only known way to
generate an exact answer is to and select the best

one.
o  Often times these problems involve finding permutations (O (n!) possible solutions) or
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"Hard" Problems

e There are many different categories of problems in computer science that are

considered to be "hard" to solve.
o Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

e [orthese categories of problems, there exist no known "good" or "efficient"
ways to generate the best solution to the problem. The only known way to
generate an exact answer is to and select the best

one.
o  Often times these problems involve finding permutations (O (n!) possible solutions) or
combinations (0 (2”n) possible solutions)

e Backtracking recursion is an elegant way to solve these kinds of problems!



Recursive optimization: “find the best solution”

e We won'’t cover these in lecture because you won’t be writing any recursive
optimization code on Assignment 3 or any of the assignments moving forward.

e Butthese types of problems are one of the most common applications of
recursion in real-world engineering systems.

e |[f you love recursion after the last two weeks and want to dive deeper into

topics we didn’t have time to explore, you can try out a recursive optimization
problem for your final project!



Using backtracking recursion

e There are 3 main categories of problems that we can solve by using

backtracking recursion:
o We can generate all possible solutions to a problem or count the total number of possible
solutions to a problem
o We can find one specific solution to a problem or prove that one exists

e There are many, many examples of specific problems that we can solve,

including Check ovt the Knapsack

o  Generating permutations
Problem in this weeke

cection handouvt!

o Generating combinations
o  And many, many more



Limitations of recursive
optimization



With great power comes great responsibility...
e Ask: What are you optimizing for?

e Keith Schwarz has a great recursive backtracking problem about optimizing
shift scheduling for a company to maximize profit. It shows how optimizing for
profit without considering how the schedule might severely affect workers’
quality of life. And this has !

e Computers can help you find strategies that maximize lots of different
quantities. Make sure you pick a quantity that takes in the perspectives of all
the stakeholders in a situation.


https://www.nytimes.com/interactive/2014/08/13/us/starbucks-workers-scheduling-hours.html

Recursion is memory intensive

e Because a stack frame gets created for every recursive call, recursion can be
very memory intensive. You'll get to experience this in A3!

e Recursion is a powerful tool for understanding data structures and algorithms,
especially in fields like artificial intelligence and systems design and

programming languages.

e But it often can’t be used in scenarios that require you to handle large amounts
of data (without some sort of added optimizations).



Recursion Wrap-up



Two types of recursion

Basic recursion Backtracking recursion

e One repeated task that builds up e Build up many possible solutions
a solution as you come back up through multiple recursive calls at
the call stack each step

e The final base case defines the e Seed the initial recursive call with
initial seed of the solution and an “empty” solution
each call contributes a little bit to e At each base case, you have a
the solution potential solution

e Initial call to recursive function e Common pattern:
produces final solution choose/explore/unchoose



Backtracking recursion: Exploring many possible solutions

Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking
® Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with )
large data structures (enumeration)
o Explicit unchoose step by "undoing" 2. Find one solution (OI’ prove
prior modifications to structure .
o E.g. Generating subsets (one set existence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore
o Pass by value; usually when memory
constraints aren’t an issue - Permutations
o Implicit unchoose step by virtue of - Subsets
making edits to copy
o  E.g. Building up a string over time

General examples of things you can do:

- Combinations
- etc.



Solving backtracking recursion problems

e Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)

e What are we building up as our “many possibilities” in order to find our solution? (subsets,
permutations, combinations, or something else)

e What’s the provided function prototype and requirements? Do we need a helper function?
o What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful?

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion? (Note:
In some very complex problems, it might be some combination of the two.)



What's next?



Roadmap

C++ basics

vectors + grids alreys

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving



Classes and Object-Oriented Programming
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