
Recursive Backtracking
Revisited

What has been your favorite part of the first 4
weeks of the course?

PollEv.com/cs106bpolls

https://pollev.com/cs106bpolls

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

recursive
problem-solving

Today’s
question

What strategies should we
use when solving recursive
backtracking problems?

Today’s
topics

1. Review + Subsets

2. Recursive backtracking
strategies

3. Practice applying strategies
a. Making combinations
b. Solving mazes with DFS

4. A brief intro to optimization
(if time)

Review
(intro to recursive backtracking)

Two types of recursion

Basic recursion

● One repeated task that builds up
a solution as you come back up
the call stack

● The final base case defines the
initial seed of the solution and
each call contributes a little bit to
the solution

● Initial call to recursive function
produces final solution

Backtracking recursion

● Build up many possible solutions
through multiple recursive calls at
each step

● Seed the initial recursive call with
an “empty” solution

● At each base case, you have a
potential solution

● Common pattern:
choose/explore/unchoose

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Word Scramble:
Finding all permutations

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations - we must use all the items and we care about their order
○ Generating subsets
○ Generating combinations
○ And many, many more

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Remember:
choose/explore/unchoose!

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Choose

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Explore

Decision tree: Find all permutations of "cat"
"cat"

""

Decisions yet to be made
Decisions made so far

"at"

"c"

"ct"

"a"

"ca"

"t"

"t"

"ca"

"t"

"ac"

"a"

"tc"

"a"

"ct"

"c"

"at"

"c"

"ta"

"cat" "cta" "act" "atc" "tca" "tac"

c

a

t

a a

a a

c c

c c

tt

t t

Unchoose

What defines our permutations decision tree?

● Decision at each step (each level of the tree):
○ What is the next letter that is going to get added to the permutation?

● Options at each decision (branches from each node):
○ One option for every remaining element that hasn't been selected yet
○ Note: The number of options will be different at each level of the tree!

● Information we need to store along the way:
○ The permutation you’ve built so far
○ The remaining elements in the original sequence

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied to generate permutation can be
thought of as "copy, edit, recurse"
○ We make new copies of the remaining and soFar strings every time we recurse.
○ We’re going to see a different method of doing choose/explore/unchoose when we work with

ADTs and don’t want to make lots of copies.

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied to generate permutation can be
thought of as "copy, edit, recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make
○ We created a helper function that had parameters for the remaining and soFar strings.
○ Calling the helper function with an initial empty parameter that gets built up (soFar) will be a

common technique for recursive backtracking.

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied to generate permutation can be
thought of as "copy, edit, recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

● Backtracking recursion can have variable branching factors at each level
○ The number of branches in our tree at each level depended on how many letters we had left.
○ We combined iteration and recursion to help us make the right number of recursive calls.

Takeaways

● The specific model of the general "choose / explore / unchoose" pattern in
backtracking recursion that we applied to generate permutation can be
thought of as "copy, edit, recurse"

● At each step of the recursive backtracking process, it is important to keep
track of the decisions we've made so far and the decisions we have left to
make

● Backtracking recursion can have variable branching factors at each level

Shrinkable Words:
Seeing if a solution exists

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including...
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more - all possible shrinkable words within a word

What defines our shrinkable decision tree?

ct ct

cart

art

at

a

Examples from Chris Gregg and Keith Schwarz

What defines our shrinkable decision tree?

● Decision at each step (each level of the tree):
○ What letter are going to remove?

● Options at each decision (branches from each node):
○ The remaining letters in the string

● Information we need to store along the way:
○ The shrinking string

Takeaways

● This is another example of copy-edit-recurse with variable branching factors
at each level!

Takeaways

● This is another example of copy-edit-recurse with variable branching factors
at each level!

● In this problem, we’re using backtracking to find if a solution exists.
○ Notice the way the recursive case is structured:

for all options at each decision point:

if recursive call returns true:

return true;

return false if all options are exhausted;

Takeaways

● This is another example of copy-edit-recurse with variable branching factors
at each level!

● In this problem, we’re using backtracking to find if a solution exists.

● We don’t need a helper function because we don’t need to keep track of the
letters we removed, only the ones we have left.

Takeaways

● This is another example of copy-edit-recurse with variable branching factors
at each level!

● In this problem, we’re using backtracking to find if a solution exists.

● We don’t need a helper function because we don’t need to keep track of the
letters we removed, only the ones we have left.

● Because we stop as soon as a word isn’t valid or shrinkable, we have multiple
base cases (in addition to multiple recursive calls).

Making teams:
Generating all possible
subsets

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Subsets (for grading the midterm)

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Nick”}

{“Kylie”}

{“Trip”}

{“Nick”, “Kylie”}

{“Nick”, “Trip”}

{“Kylie”, “Trip”}

{“Nick”, “Kylie”, “Trip”}

Another case of
“generate/count all

solutions” using recursive
backtracking!

Subsets (cont.)

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

We noticed a pattern…

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets contain
“Jenny”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets contain
“Kylie”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets contain
“Trip”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets that
contain “Trip” also contain

“Jenny”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

Half the subsets that
contain both “Trip” and
“Jenny” contain “Kylie”

Subsets

Given a group of people, suppose we wanted to generate all possible teams, or
subsets, of those people:

{}

{“Jenny”}

{“Kylie”}

{“Trip”}

{“Jenny”, “Kylie”}

{“Jenny”, “Trip”}

{“Kylie”, “Trip”}

{“Jenny”, “Kylie”, “Trip”}

🤔

What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set

Decision tree
Empty set

Decision tree
Empty set Include JennyDon’t include Jenny

Decision tree
Empty set Include JennyDon’t include Jenny

No Kylie Kylie

Decision tree
Empty set Include JennyDon’t include Jenny

No Kylie Kylie

No Trip Trip

Decision tree
Empty set Include JennyDon’t include Jenny

No Kylie Kylie

No Trip Trip No Trip Trip

No Kylie Kylie

No Trip Trip No Trip Trip

What defines our subsets decision tree?

● Decision at each step (each level of the tree):
○ Are we going to include a given element in our subset?

● Options at each decision (branches from each node):
○ Include element
○ Don’t include element

● Information we need to store along the way:
○ The set you’ve built so far
○ The remaining elements in the original set

Decision tree

Remaining: {“Jenny”, “Kylie”, “Trip”}

Decision tree

Remaining: {“Jenny”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Decision tree

Remaining: {“Jenny”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Decision tree

Remaining: {“Jenny”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Base case: No people remaining to choose from!

Decision tree

Remaining: {“Jenny”, “Kylie”, “Trip”}

Remaining: {“Kylie”, “Trip”}

Remaining: {“Trip”}

Remaining: {}

Recursive case: Pick someone in the set. Choose to
include or not include them.

Let’s code it!

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Choose

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explore
(part 1)

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explore
(part 2)

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Explicit
Unchoose
(i.e. undo)

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

string elem = remaining.first();

// remove this element from possible choices

remaining = remaining - elem;

listSubsetsHelper(remaining, chosen); // do not add elem to chosen

chosen = chosen + elem;

listSubsetsHelper(remaining, chosen); // add elem to chosen

chosen = chosen - elem;

// add this element back to possible choices

remaining = remaining + elem;

Without this
step, we could
not explore the
other side of
the tree

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing

them!

● Note the difference in the options at each step in this problem vs. the previous
two.
○ It’s also important to keep in mind what information you have to keep

track of with each recursive call. This might help you define your base
case (e.g. having an empty remaining set).

Takeaways

● This is our first time seeing an explicit “unchoose” step
○ This is necessary because we’re passing sets by reference and editing them!

● Note the difference in the options at each step in this problem vs. the previous
two.
○ It’s also important to keep in mind what information you have to keep track of with

each recursive call. This might help you define your base case (e.g. having an
empty remaining set).

● This was our first example using ADTs with recursion, and we’ll see more
today!

Two methods of choose/explore/unchoose

● Choose explore undo
○ Uses pass by reference; usually with large data structures
○ Explicit unchoose step by "undoing" prior modifications to structure
○ E.g. Generating subsets (one set passed around by reference to track

subsets)

● Copy edit explore
○ Pass by value; usually when memory constraints aren’t an issue
○ Implicit unchoose step by virtue of making edits to copy
○ E.g. Building up a string over time

Backtracking recursion: Exploring many possible solutions

Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with

large data structures
○ Explicit unchoose step by "undoing"

prior modifications to structure
○ E.g. Generating subsets (one set

passed around by reference to track
subsets)

● Copy edit explore
○ Pass by value; usually when memory

constraints aren’t an issue
○ Implicit unchoose step by virtue of

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions
(enumeration)

2. Find one solution (or prove
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

What process should we use to
solve recursive backtracking

problems?

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution? (subsets,

permutations, or something else)

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution? (a boolean, void but printing out a string or ADT)
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful? (sets, strings)

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Combinations

Creating fixed-size teams:
Generating all possible
combinations

Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 graders out of a group of 8.
○ More useful than our generating subsets solution!

Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 graders out of a group of 8.

● This sounds very similar to the problem we solved when we generated subsets
– these 5 graders would be a subset of the overall group of 8.

Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 graders out of a group of 8.

● This sounds very similar to the problem we solved when we generated subsets
– these 5 graders would be a subset of the overall group of 8.

● What distinguishes a combination from a subset?
○ Combinations always have a specified size, unlike subsets (which can be any size)
○ We can think of combinations as "subsets with constraints"

Subsets vs. Combinations

● Our goal: We want to pick a combination of 5 graders out of a group of 8.

● This sounds very similar to the problem we solved when we generated subsets
– these 5 graders would be a subset of the overall group of 8.

● What distinguishes a combination from a subset?
○ Combinations always have a specified size, unlike subsets (which can be any size)
○ We can think of combinations as "subsets with constraints"

● Could we use the code from before, generate all subsets, and then filter out all
those of size 5?
○ We could, but that would be inefficient. Let's develop a better approach for combinations!

How do we approach this
problem?

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

What are we returning as our solution?

● Each combination of k graders can be represented as a Set<string>.

● In our string examples, we were content with just printing out all solutions. But
what if we wanted to store all of them to be able to do something with them
later?

● We want to return a container holding all possible combinations:

Set<Set<string>>

It’s not that unusual to see containers nested this way!

What are we returning as our solution?

● Each combination of k graders can be represented as a Set<string>.

● In our string examples, we were content with just printing out all solutions. But
what if we wanted to store all of them to be able to do something with them
later?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

Attendance ticket:
https://tinyurl.com/combinationsHelper

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/combinationsHelper

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

We’ll need to keep track of a current set of graders as we’re building up each
possible set of strings. (We need a helper!)

Do we need a helper function?

Set<Set<string>> combinationsOf(Set<string>& graders, int k)

We’ll need to keep track of a current set of graders as we’re building up each
possible set of strings. (We need a helper!)

Set<Set<string>> combinationsHelper(Set<string>& remaining, int k, Set<string>&

chosen)

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

An exercise for you to try at home!
(solution is in the lecture code)

Announcements

Announcements

● Assignment 3 is due next Tuesday at 11:59pm PDT. The grace period ends
Wednesday at 11:59pm PDT.

● Assignment 2 revisions will be due Friday, July 22 at 11:59pm PDT.

● The final project criteria have been released!
○ Please read through the entire page on the course website.
○ The timeline is suggested but there are three required milestones:

■ Project proposal: Sunday, July 24
■ Project write-up: Sunday, August 7
■ Project presentations: August 11-14

Revisiting mazes

Solving mazes with breadth-first search (BFS)

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview

Solving mazes with breadth-first search (BFS)

Can we do it recursively?

How do we approach this
problem?

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets
○ Generating combinations
○ And many, many more - all possible routes through a maze

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

Do we need a helper function?

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

Do we need a helper function?

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

● We need a helper function to keep track of our path through the maze!
○ Our helper function will have as parameters: the maze itself and the path we’re building up.
○ We also want the helper to be able to tell us whether or not the maze is solvable – let’s have it

return a boolean.

Do we need a helper function?

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

● We need a helper function to keep track of our path through the maze!

bool solveMazeHelper(Grid<bool>& maze,

Stack<GridLocation>& path)

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution?

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution?
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion?

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

A recursive algorithm for solving mazes

● Start at the entrance

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

Dead end!
(cannot go North,

South, East, or West)

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

We must go back one
step.

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

Dead end!
(cannot go North,

South, East, or West)

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

We must go back one
step.

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

A recursive algorithm for solving mazes

● Start at the entrance
● Take one step North, South, East, or West
● Repeat until we’re at the end of the maze

start

finish

End of the maze!

A recursive algorithm for solving mazes

● Base case: If we’re at the end of the maze, stop
● Recursive case: Explore North, South, East, then West

start

finish

What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location

What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location

Exercise for home:
Draw the decision tree.

What defines our maze decision tree?

● Decision at each step (each level of the tree):
○ Which valid move will we take?

● Options at each decision (branches from each node):
○ All valid moves (in bounds, not a wall, not previously visited) that are either

North, South, East, or West of the current location

● Information we need to store along the way:
○ The path we’ve taken so far (a Stack we’re building up)
○ Where we’ve already visited
○ Our current location

We need to make an adjustment!

● Recall our solveMaze prototype:

Stack<GridLocation> solveMaze(Grid<bool>& maze)

● We need a helper function to keep track of our path through the maze!

bool solveMazeHelper(Grid<bool>& maze,

Stack<GridLocation>& path,

GridLocation cur)

Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up,

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or

not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) → This works with our existing generateValidMoves() function

Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up,

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or

not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) → This works with our existing generateValidMoves() function

● Recursive case: Iterate over valid moves from generateValidMoves() and try adding
them to our path
○ If any recursive call returns true, we have a solution
○ If all fail, return false

Pseudocode
● Our helper function will have as parameters: the maze itself, the path we’re building up,

and the current location.
○ Idea: Use the boolean Grid (the maze itself) to store information about whether or

not a location has been visited by flipping the cell to false once it’s in the path (to
avoid loops) → This works with our existing generateValidMoves() function

● Recursive case: Iterate over valid moves from generateValidMoves() and try adding
them to our path
○ If any recursive call returns true, we have a solution
○ If all fail, return false

● Base case: We can stop exploring when we’ve reached the exit → return true if the
current location is the exit

Let’s code it!

Takeaways

● Recursive maze-solving uses choose/explore/undo because we have to
explicitly “unchoose” by setting cells back to true after trying them.

● Our helper function may have a different return type from our initial function
prototype, and our wrapper function (not the helper) may be more complex
than just a call to our helper function.

● It may be helpful to revisit and adjust our initial answers to our planning
questions as we determine more about the algorithm we want to use (e.g.
adding a parameter to our helper function).

Recursion is depth-first search
(DFS)!

BFS vs. DFS comparison Which do you think will be faster?

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

BFS vs. DFS comparison

● BFS is typically iterative while DFS is naturally expressed recursively.

● Although DFS is faster in this particular case, which search strategy to use
depends on the problem you’re solving.

● BFS looks at all paths of a particular length before moving on to longer paths,
so it’s guaranteed to find the shortest path (e.g. word ladder)!

● DFS doesn’t need to store all partial paths along the way, so it has a smaller
memory footprint than BFS does.

Recursive Optimization
(a brief intro)

"Hard" Problems

"Hard" Problems

● There are many different categories of problems in computer science that are
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

"Hard" Problems

● There are many different categories of problems in computer science that are
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

● For these categories of problems, there exist no known "good" or "efficient"
ways to generate the best solution to the problem. The only known way to
generate an exact answer is to try all possible solutions and select the best
one.
○ Often times these problems involve finding permutations (O(n!) possible solutions) or

combinations (O(2^n) possible solutions)

"Hard" Problems

● There are many different categories of problems in computer science that are
considered to be "hard" to solve.
○ Formally, these are known as "NP-hard" problems. Take CS103 to learn more!

● For these categories of problems, there exist no known "good" or "efficient"
ways to generate the best solution to the problem. The only known way to
generate an exact answer is to try all possible solutions and select the best
one.
○ Often times these problems involve finding permutations (O(n!) possible solutions) or

combinations (O(2^n) possible solutions)

● Backtracking recursion is an elegant way to solve these kinds of problems!

Recursive optimization: “find the best solution”

● We won’t cover these in lecture because you won’t be writing any recursive
optimization code on Assignment 3 or any of the assignments moving forward.

● But these types of problems are one of the most common applications of
recursion in real-world engineering systems.

● If you love recursion after the last two weeks and want to dive deeper into
topics we didn’t have time to explore, you can try out a recursive optimization
problem for your final project!

Using backtracking recursion

● There are 3 main categories of problems that we can solve by using
backtracking recursion:
○ We can generate all possible solutions to a problem or count the total number of possible

solutions to a problem
○ We can find one specific solution to a problem or prove that one exists
○ We can find the best possible solution to a given problem → optimization!

● There are many, many examples of specific problems that we can solve,
including
○ Generating permutations
○ Generating subsets (with additional constraints!)
○ Generating combinations
○ And many, many more

Check out the Knapsack
Problem in this week’s
section handout!

Limitations of recursive
optimization

With great power comes great responsibility…

● Ask: What are you optimizing for?

● Keith Schwarz has a great recursive backtracking problem about optimizing
shift scheduling for a company to maximize profit. It shows how optimizing for
profit without considering how the schedule might severely affect workers’
quality of life. And this has happened in real life!

● Computers can help you find strategies that maximize lots of different
quantities. Make sure you pick a quantity that takes in the perspectives of all
the stakeholders in a situation.

https://www.nytimes.com/interactive/2014/08/13/us/starbucks-workers-scheduling-hours.html

Recursion is memory intensive

● Because a stack frame gets created for every recursive call, recursion can be
very memory intensive. You’ll get to experience this in A3!

● Recursion is a powerful tool for understanding data structures and algorithms,
especially in fields like artificial intelligence and systems design and
programming languages.

● But it often can’t be used in scenarios that require you to handle large amounts
of data (without some sort of added optimizations).

Recursion Wrap-up

Two types of recursion

Basic recursion

● One repeated task that builds up
a solution as you come back up
the call stack

● The final base case defines the
initial seed of the solution and
each call contributes a little bit to
the solution

● Initial call to recursive function
produces final solution

Backtracking recursion

● Build up many possible solutions
through multiple recursive calls at
each step

● Seed the initial recursive call with
an “empty” solution

● At each base case, you have a
potential solution

● Common pattern:
choose/explore/unchoose

Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with

large data structures
○ Explicit unchoose step by "undoing"

prior modifications to structure
○ E.g. Generating subsets (one set

passed around by reference to track
subsets)

● Copy edit explore
○ Pass by value; usually when memory

constraints aren’t an issue
○ Implicit unchoose step by virtue of

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions
(enumeration)

2. Find one solution (or prove
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution? (subsets,

permutations, combinations, or something else)

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion? (Note:

In some very complex problems, it might be some combination of the two.)

What’s next?

vectors + grids

 stacks + queues

 sets + maps

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap
Object-Oriented

Programming

Classes and Object-Oriented Programming

