
Object-Oriented
Programming

What do you think makes a good, well-designed
abstraction?

PollEv.com/cs106bpolls

https://pollev.com/cs106bpolls

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

Roadmap

Life after CS106B!
Core
Tools

User/client
Implementation

Object-Oriented
Programming

Today’s
question

How do we design and
define our own
abstractions?

Today’s
topics

1. Review

2. What is a class?

3. Designing C++ classes

4. Writing classes in C++

Review

Two ways of doing it

● Choose explore undo
○ Uses pass by reference; usually with

large data structures
○ Explicit unchoose step by "undoing"

prior modifications to structure
○ E.g. Generating subsets (one set

passed around by reference to track
subsets)

● Copy edit explore
○ Pass by value; usually when memory

constraints aren’t an issue
○ Implicit unchoose step by virtue of

making edits to copy
○ E.g. Building up a string over time

Three use cases for backtracking

1. Generate/count all solutions
(enumeration)

2. Find one solution (or prove
existence)

3. Pick one best solution

General examples of things you can do:
- Permutations
- Subsets
- Combinations
- etc.

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

Solving backtracking recursion problems
● Which of our three use cases does our problem fall into? (generate/count all solutions, find one

solution/prove its existence, pick one best solution)
● What are we building up as our “many possibilities” in order to find our solution? (subsets,

permutations, combinations, or something else)

● What’s the provided function prototype and requirements? Do we need a helper function?
○ What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
○ Do we care about returning or keeping track of the path we took to get to our solution? If yes,

what parameters are we already given and what others might be useful?

● What are our base and recursive cases?
○ What does my decision tree look like? (decisions, options, what to keep track of)
○ In addition to what we’re building up, are there any additional constraints on our solutions?
○ Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion? (Note:

In some very complex problems, it might be some combination of the two.)

Problems you’ve seen

● Generating coin flip sequences

● Word scramble permutations

● Shrinkable words

● Subsets of graders

● Combinations of graders

● Solving a maze

Problems you’ve seen

● Generating coin flip sequences

● Word scramble permutations

● Shrinkable words

● Subsets of graders

● Combinations of graders

● Solving a maze

Check out a student’s solution on Ed that
combines recursion and iteration to solve

this problem without a helper!

Solving mazes with depth-first search (DFS)

BFS vs. DFS comparison

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

What if we don’t unchoose?

BFS vs. DFS summary

● BFS is typically iterative while DFS is naturally expressed recursively.

● Although DFS is faster in this particular case, which search strategy to use
depends on the problem you’re solving.

● BFS looks at all paths of a particular length before moving on to longer paths,
so it’s guaranteed to find the shortest path (e.g. word ladder)!

● DFS doesn’t need to store all partial paths along the way, so it has a smaller
memory footprint than BFS does.

But recursion is memory intensive for the compiler

● Because a stack frame gets created for every recursive call, recursion can be
memory intensive for your compiler. You’ll get to experience this in A3!
○ The Big-O of DFS and BFS are the same when we consider the worst case (which is what we

care about in this class), but it gets more complicated when we think about Big-O on average.
○ There are also different trade-offs: BFS can be expensive due to storing many copies of ADTs.

But recursion is memory intensive for the compiler

● Because a stack frame gets created for every recursive call, recursion can be
memory intensive for your compiler. You’ll get to experience this in A3!
○ The Big-O of DFS and BFS are the same when we consider the worst case (which is what we

care about in this class), but it gets more complicated when we think about Big-O on average.
○ There are also different trade-offs: BFS can be expensive due to storing many copies of ADTs.

● Recursion is a powerful tool for understanding data structures and algorithms,
especially in fields like artificial intelligence and systems design and
programming languages.

But recursion is memory intensive for the compiler

● Because a stack frame gets created for every recursive call, recursion can be
memory intensive for your compiler. You’ll get to experience this in A3!
○ The Big-O of DFS and BFS are the same when we consider the worst case (which is what we

care about in this class), but it gets more complicated when we think about Big-O on average.
○ There are also different trade-offs: BFS can be expensive due to storing many copies of ADTs.

● Recursion is a powerful tool for understanding data structures and algorithms,
especially in fields like artificial intelligence and systems design and
programming languages.

● But it often can’t be used in scenarios that require you to handle large amounts
of data (without some sort of added optimizations).

Where are we now?

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

classes

object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

classes
object-oriented programming

algorithmic analysistesting recursive problem-solving

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

This is our abstraction
boundary!

Revisiting abstraction

Example
demonstration

borrowed from Keith
Schwarz

abstraction
Design that hides the details of how

something works while still allowing the user
to access complex functionality

Definition

abstraction
Design that hides the details of how

something works while still allowing the user
to access complex functionality

Definition

What is a class?

class
A class defines a new data type for our

programs to use.

Definition

class
A class defines a new data type for our

programs to use.

Definition

Classes help us create types of objects -
which is why we call this object-oriented

programming!

class
A class defines a new data type for our

programs to use.

Definition

This sounds familiar...

Remember structs?

struct GridLocation {

 int col;

 int row;

};

struct Course {

 string name;

 string teacher;

 int numStudents;

};

Remember structs?

struct GridLocation {

 int col;

 int row;

};

struct Course {

 string name;

 string teacher;

 int numStudents;

};

struct
A way to bundle different

types of information in C++ –
like creating a custom data

structure.

Definition

Then what’s the difference between a class and a struct?

Remember structs?

GridLocation chosen;

cout << chosen.row << endl;

cout << chosen.col << endl;

Grid<int> board(3, 3);

cout << board.numRows() << endl;

cout << board.numCols() << endl;

What’s the difference in how you use a GridLocation vs. a Grid?

Remember structs?

GridLocation chosen;

cout << chosen.row << endl;

cout << chosen.col << endl;

chosen.row = 3;

chosen.col = 4;

What’s the difference in how you use a GridLocation vs. a Grid?

Grid<int> board(3, 3);

cout << board.numRows() << endl;

cout << board.numCols() << endl;

board.numRows = 5;

board.numCols = 4;

Grid<int> board(3, 3);

cout << board.numRows() << endl;

cout << board.numCols() << endl;

board.numRows = 5;

board.numCols = 4;

Remember structs?

GridLocation chosen;

cout << chosen.row << endl;

cout << chosen.col << endl;

chosen.row = 3;

chosen.col = 4;

We don’t have direct access to Grid’s number of rows and number of columns!

Grid<int> board(3, 3);

cout << board.numRows() << endl;

cout << board.numCols() << endl;

board.resize(5, 4);

Remember structs?

GridLocation chosen;

cout << chosen.row << endl;

cout << chosen.col << endl;

chosen.row = 3;

chosen.col = 4;

We have to use a function that allows us to adjust those properties instead.

Grid<int> board(3, 3);

cout << board.numRows() << endl;

cout << board.numCols() << endl;

board.resize(5, 4);

Remember structs?

GridLocation chosen;

cout << chosen.row << endl;

cout << chosen.col << endl;

chosen.row = 3;

chosen.col = 4;

We have to use a function that allows us to adjust those properties instead.

Why?

encapsulation
The process of grouping related information

and relevant functions into one unit and
defining where that information is accessible

Definition

encapsulation
The process of grouping related information

and relevant functions into one unit and
defining where that information is accessible

Definition

If we have time at the end of class, we’ll look
at an example of why this matters!

What is a class?

● Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

What is a class?

● Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

● Every class has two parts:
○ an interface specifying what operations can be performed on instances of

the class (this defines the abstraction boundary)
○ an implementation specifying how those operations are to be performed

What is a class?

● Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

● Every class has two parts:
○ an interface specifying what operations can be performed on instances of

the class (this defines the abstraction boundary)
○ an implementation specifying how those operations are to be performed

● The only difference between structs + classes are the encapsulation defaults.
○ A struct defaults to public members (accessible outside the class itself).
○ A class defaults to private members (accessible only inside the class

implementation).

Another way to think about classes...

● A blueprint for a new type of C++ object!

Another way to think about classes...

● A blueprint for a new type of C++ object!
○ The blueprint describes a general structure, and we can create

specific instances of our class using this structure.

Another way to think about classes...

● A blueprint for a new type of C++ object!
○ The blueprint describes a general structure, and we can create

specific instances of our class using this structure.

instance
When we create an object that is our new type,

we call this creating an instance of our class.

Definition

Another way to think about classes...

● A blueprint for a new type of C++ object!
○ The blueprint describes a general structure, and we can create

specific instances of our class using this structure.

Vector<int> vec;

Creates an instance of the Vector class
(i.e. an object of the type Vector)

How do we design C++
classes?

Three main parts

● Member variables

● Member functions (methods)

● Constructor

Three main parts

● Member variables
○ These are the variables stored within the class
○ Usually not accessible outside the class implementation

● Member functions (methods)

● Constructor

Three main parts

● Member variables

● Member functions (methods)
○ Functions you can call on the object
○ E.g. vec.add(), vec.size(), vec.remove(), etc.

● Constructor

Three main parts

● Member variables

● Member functions (methods)

● Constructor
○ Gets called when you create the object
○ E.g. Vector<int> vec;

Three main parts

● Member variables
○ These are the variables stored within the class
○ Usually not accessible outside the class implementation

● Member functions (methods)
○ Functions you can call on the object
○ E.g. vec.add(), vec.size(), vec.remove(), etc.

● Constructor
○ Gets called when you create the object
○ E.g. Vector<int> vec;

How do we design a class?
We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

How do we design a class?
We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, classes are useful in helping us with complex programs where
information can be grouped into objects.

Design activity

How would you design a class for...

● A bank account that enables
transferring funds between
accounts

● A Spotify (or other music
platform) playlist

We must specify the 3 parts:

1. Member variables: What subvariables
make up this new variable type?

2. Member functions: What functions can
you call on a variable of this type?

3. Constructor: What happens when you
make a new instance of this type?

Attendance ticket:
https://tinyurl.com/designClassesOOP

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/designClassesOOP

How would you design a class for...

● A bank account that enables
transferring funds between
accounts

● A Spotify (or other music
platform) playlist

We must specify the 3 parts:

1. Member variables: What subvariables
make up this new variable type?

2. Member functions: What functions can
you call on a variable of this type?

3. Constructor: What happens when you
make a new instance of this type?

Announcements

Announcements

● Assignment 3 is due next Tuesday at 11:59pm PDT. The grace period ends
Wednesday at 11:59pm PDT.

● Assignment 2 revisions will be due Friday, July 22 at 11:59pm PDT.

● Midterm grades will be released early next week, and you’ll be able to
schedule a check-in with your SL either next week or the following.

● The final project proposals are due Sunday, July 24.
○ Come chat with us about what you’re interested in at Office Hours!

How do we write classes in
C++?

Random Bags

Random Bags

● A random bag is a data structure similar to a stack or queue. It
supports two operations:
○ add, which puts an element into the random bag, and
○ remove random, which returns and removes a random element from the bag.

Random Bags

● A random bag is a data structure similar to a stack or queue. It
supports two operations:
○ add, which puts an element into the random bag, and
○ remove random, which returns and removes a random element from the bag.

● Random bags have a number of applications:
○ Simpler: Shuffling a deck of cards.
○ More advanced: Generating artwork, designing mazes, and training self-driving cars

to park and change lanes!

Random Bags

● A random bag is a data structure similar to a stack or queue. It
supports two operations:
○ add, which puts an element into the random bag, and
○ remove random, which returns and removes a random element from the bag.

● Random bags have a number of applications:
○ Simpler: Shuffling a deck of cards.
○ More advanced: Generating artwork, designing mazes, and training self-driving cars

to park and change lanes.

● Let’s go create our own custom RandomBag type!

Creating our own class

Classes in C++

● Defining a class in C++ (typically) requires two steps:

Classes in C++

● Defining a class in C++ (typically) requires two steps:
○ Create a header file (typically suffixed with .h) describing what

operations the class can perform and what internal state it needs.

Classes in C++

● Defining a class in C++ (typically) requires two steps:
○ Create a header file (typically suffixed with .h) describing what

operations the class can perform and what internal state it needs.
○ Create an implementation file (typically suffixed with .cpp) that

contains the implementation of the class.

Classes in C++

● Defining a class in C++ (typically) requires two steps:
○ Create a header file (typically suffixed with .h) describing what

operations the class can perform and what internal state it needs.
○ Create an implementation file (typically suffixed with .cpp) that

contains the implementation of the class.

● Clients of the class can then include (using the #include directive)
the header file to use the class.

Header files

What's in a header?

What's in a header?

#pragma once

This boilerplate code is called a
preprocessor directive. It’s used to
make sure weird things don’t
happen if you include the same
header twice.

Curious how it works? Come ask us
after class!

What's in a header?

#pragma once

class RandomBag {

};

This is a class definition. We’re
creating a new class called
RandomBag. Like a struct, this
defines the name of a new type
that we can use in our programs.

What's in a header?

#pragma once

class RandomBag {

};

Don't forget to add the semicolon!

You'll run into some scary compiler
errors if you leave it out!

What's in a header?

#pragma once

class RandomBag {
public:

private:

};

What's in a header?

#pragma once

class RandomBag {
public:

private:

};

The public interface specifies what
functions you can call on objects
of this type. (i.e. its methods)

Think things like the Vector
.add() function or the string's

.find().

What's in a header?

#pragma once

class RandomBag {
public:

private:

};

The public interface specifies what
functions you can call on objects
of this type. (i.e. its methods)

Think things like the Vector
.add() function or the string's

.find().

The private implementation
contains information that objects
of this class type will need in order
to do their job properly. This is
invisible to people using the class.

What's in a header?

#pragma once

class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:

};

These are member functions of
the RandomBag class. They're
functions you can call on objects
of type RandomBag.

All member functions must be
defined in the class definition. We'll
implement these functions in the
C++ file.

What's in a header?

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

This is a data member of the
class. This tells us how the class is
implemented. Internally, we're
going to store a Vector<int>
holding all the elements. The only
code that can access or touch this
Vector is the RandomBag
implementation.

Header summary

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

Class definition and name

Member variable

Methods

Header summary

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

Implementation files
RandomBag.cpp

#include "RandomBag.h"

#include "RandomBag.h"

If we're going to implement the
RandomBag type, the .cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

#include "RandomBag.h"

If we're going to implement the
RandomBag type, the .cpp file
needs to have the class definition
available. All implementation files
need to include the relevant
headers.

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}
The syntax RandomBag::add means “the add function defined inside
of RandomBag." The :: operator is called the scope resolution operator
in C++ and is used to say where to look for things.

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}
If we had written something like this instead, then the compiler
would think we were just making a free function named add that has
nothing to do with RandomBag’s version of add. That’s an easy
mistake to make!

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

We don't need to specify where elems is. The compiler knows that
we're inside RandomBag, and so it knows that this means "the current
RandomBag's collection of elements." Using the scope resolution
operator is like passing in an invisible parameter to the function to
indicate what the current instance is.

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();

private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() {
return elems.size();

}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
 return size() == 0;
}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, elems.size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
 return size() == 0;
}

This code calls our own
size() function. The class
implementation can use the
public interface.

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
 return size() == 0;
}

What a good idea!
Let's use it up here
as well.

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size();
 bool isEmpty();
private:
 Vector<int> elems;
};

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() {
return elems.size();

}

bool RandomBag::isEmpty() {
 return size() == 0;
}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

This use of the const keyword
means "I promise that this
function doesn't change the
state of the object."

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() const {
return elems.size();

}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

We have to remember to
add it into the
implementation as well!

#include "RandomBag.h"

void RandomBag::add(int value){
elems.add(value);

}

int RandomBag::removeRandom() {
 if (elems.isEmpty()) {
 error("Aaaaahhh!");
 }
 int index = randomInteger(0, size() - 1);
 int result = elems[index];
 elems.remove(index);
 return result;
}

int RandomBag::size() const {
return elems.size();

}

bool RandomBag::isEmpty() const {
 return size() == 0;
}

#pragma once
#include "vector.h"
class RandomBag {
public:
 void add(int value);
 int removeRandom();
 int size() const;
 bool isEmpty() const;
private:
 Vector<int> elems;
};

Note: There are some
additional #includes that
we’ll need. (We’ll see them in
the actual .cpp file.)

Using a custom class
[Qt Creator demo]

Takeaways
● Public member variables declared in the header file are automatically

accessible in the .cpp file

Takeaways
● Public member variables declared in the header file are automatically

accessible in the .cpp file

● As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

Takeaways
● Public member variables declared in the header file are automatically

accessible in the .cpp file

● As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

● Member functions have an implicit parameter that allows them to know what
instance of the class (i.e. which object) they’re operating on

Takeaways
● Public member variables declared in the header file are automatically

accessible in the .cpp file

● As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

● Member functions have an implicit parameter that allows them to know what
instance of the class (i.e. which object) they’re operating on

● When you don’t have a constructor, there’s a default, zero-argument
constructor that instantiates all private member variables
○ (We’ll see an explicit constructor next week!)

An example:
Structs vs. classes
[time-permitting]

Summary

Object-Oriented Programming

● We create our own abstractions for defining data types using classes. Classes
allow us to encapsulate information in a structured way.

● Classes have three main parts to keep in mind when designing them:
○ Member variables → these are always private
○ Member functions (methods) → these can be private or public
○ Constructor → this is created by default if you don’t define one

● Writing classes requires the creation of a header (.h) file for the interface and
an implementation (.cpp) file.

What’s next?

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

User/client
 arrays

 dynamic memory
 management

linked data structures

Implementation

Dynamic memory and arrays

