Object-Oriented
Programming

What do you think makes a good, well-designed
abstraction?

https://pollev.com/cs106bpolls

What do you think makes a good, well-designed
abstraction?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Object-Oriented
Roadmap Programming

Life after CS106B/

How do we design and
define our own

queStiOn abstractions?

Today’s

Review

Today'’s
topics

. What is a class?

Designing C++ classes

. Writing classes in C++

Review

Backtracking recursion: Exploring many possible solutions
Overall paradigm: choose/explore/unchoose

Two ways of doing it Three use cases for backtracking
® Choose explore undo 1. Generate/count all solutions
o Uses pass by reference; usually with)
large data structures (enumeration)
o Explicit unchoose step by "undoing" 2. Find one solution (OI’ prove
prior modifications to structure .
o E.g. Generating subsets (one set existence)
passed around by reference to track 3. Pick one best solution
subsets)

e Copy edit explore
o Pass by value; usually when memory
constraints aren’t an issue - Permutations
o Implicit unchoose step by virtue of - Subsets
making edits to copy
o E.g. Building up a string over time

General examples of things you can do:

- Combinations
- etc.

Solving backtracking recursion problems

e Which of our three use cases does our problem fall into? (generate/count all solutions, find one
solution/prove its existence, pick one best solution)

e What are we building up as our “many possibilities” in order to find our solution? (subsets,
permutations, combinations, or something else)

e What’s the provided function prototype and requirements? Do we need a helper function?
o What are we returning as our solution? (a boolean, a final value, a set of results, etc.)
o Do we care about returning or keeping track of the path we took to get to our solution? If yes,
what parameters are we already given and what others might be useful?

e What are our base and recursive cases?
o What does my decision tree look like? (decisions, options, what to keep track of)
o In addition to what we’re building up, are there any additional constraints on our solutions?
o Does it make sense to use choose/explore/undo OR copy/edit/recurse for the recursion? (Note:
In some very complex problems, it might be some combination of the two.)

Problems you’ve seen

e Generating coin flip sequences
e Word scramble permutations

e Shrinkable words

e Subsets of graders

e Combinations of graders

e Solving a maze

Problems you’ve seen

e Generating coin flip sequences
e Word scramble permutations
e Shrinkable words

e Subsets of graders ’
Check ovt a student’e colution on Ed that

e Combinations of graders combines recursion and /‘teraﬁon to colve

thic lbraé/em without a Ae/,bek./
e Solving a maze

Solving mazes with depth-first search (DFS)

o] Maze Graphics
000000000
°
XX
®
ooao
°
20000
°
0000000
°
XX

BFS vs. DFS comparison

https://docs.google.com/file/d/1ycs-qP6NgGm-sEQHJWvBZI8TZHu6rfbL/preview
https://docs.google.com/file/d/1Yj5nl4GuQP6o2RNWlprFLWyzzbBVL-O3/preview

What if we don’t unchoose?

BFS vs. DFS summary

e BFS is typically iterative while DFS is naturally expressed recursively.

e Although DFS is faster in this particular case, which search strategy to use
depends on the problem you’re solving.

e BFS looks at all paths of a particular length before moving on to longer paths,
so it’s guaranteed to find the shortest path (e.g. word ladder)!

e DFS doesn’t need to store all partial paths along the way, so it has a smaller
memory footprint than BFS does.

But recursion is memory intensive for the compiler

e Because a stack frame gets created for every recursive call, recursion can be

memory intensive for your compiler. You'll get to experience this in A3!
o The Big-O of DFS and BFS are the same when we consider the worst case (which is what we
care about in this class), but it gets more complicated when we think about Big-O on average.
o There are also different trade-offs: BFS can be expensive due to storing many copies of ADTs.

But recursion is memory intensive for the compiler

e Because a stack frame gets created for every recursive call, recursion can be

memory intensive for your compiler. You'll get to experience this in A3!
o The Big-O of DFS and BFS are the same when we consider the worst case (which is what we
care about in this class), but it gets more complicated when we think about Big-O on average.
o There are also different trade-offs: BFS can be expensive due to storing many copies of ADTs.

e Recursion is a powerful tool for understanding data structures and algorithms,
especially in fields like artificial intelligence and systems design and
programming languages.

But recursion is memory intensive for the compiler

e Because a stack frame gets created for every recursive call, recursion can be

memory intensive for your compiler. You'll get to experience this in A3!
o The Big-O of DFS and BFS are the same when we consider the worst case (which is what we
care about in this class), but it gets more complicated when we think about Big-O on average.
o There are also different trade-offs: BFS can be expensive due to storing many copies of ADTs.

e Recursion is a powerful tool for understanding data structures and algorithms,
especially in fields like artificial intelligence and systems design and
programming languages.

e But it often can’t be used in scenarios that require you to handle large amounts
of data (without some sort of added optimizations).

Where are we now?

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving

classes

object-oriented programming

abstract data structures
(vectors, maps, etc.)

v

arrays

dynamic memory
management

linked data structures

testing ‘/

algorithmic analysis \/

recursive problem-solving ‘/

abstract data structures
(vectors, maps, etc.)

Thic ic our abstraction

éounc/o.ky./

arrays

dynamic memory
management

linked data structures

testing

algorithmic analysis

recursive problem-solving

Revisiting abstraction

ab-strac-tion
]

freedom from
representational

qualities in art
Example

demonctration

borrowed from Keith

Source: Google gbhwarz

| —=p
f* 8ie,

I

M p

T /",",j/."' ‘. _‘
\\ y ‘/{«‘ 3 \\\\\\\M&\(«((\\\)

XW/ ///{

W

7

Wi

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality

abstraction
Design that hides the details of how
something works while still allowing the user
to access complex functionality

What is a class?

class
A class defines a new data type for our
programs to use.

Classes help us create types of objects -
which ic why we call thic object-oriented

,broymmming./

class
A class defines a new data type for our
programs to use.

class
A class defines a new data type for our
programs to use.

Thie counds familiar...

Remember structs?

struct GridLocation {
int col;
int row;

s

struct Course {
string name;
string teacher;
int numStudents;

s

Remember structs?

struct GridLocation {

int col;
int row;
1 struct
A way to bundle different
struct Course { types of information in C++ —
string name; like creating a custom data
string teacher; structure.
int numStudents;
¥ Then what'e the difference between a class and a struct?

Remember structs?

GridLocation chosen; Grid<int> board(3, 3);
cout << chosen.row << endl; cout << board.numRows() << endl;
cout << chosen.col << endl; cout << board.numCols() << endl;

Whate the difference in how you use a Gridlocation ve. a Grid?

Remember structs?

GridLocation chosen; Grid<int> board(3, 3);

cout << chosen.row << endl; cout << board.numRows() << endl;
cout << chosen.col << endl; cout << board.numCols() << endl;
chosen.row = 3; board.numRows = 5;

chosen.col = 4; board.numCols = 4;

Whate the difference in how you use a Gridlocation ve. a Grid?

Remember structs?

GridLocation chosen;
cout << chosen.row << endl;
cout << chosen.col << endl;

chosen.row = 3;
chosen.col = 4;

Grid<int> board(3, 3);
cout << board.numRows() << endl;
cout << board.numCols() << endl;

board.
board.n

= 5;
4;

We don't have direct accecs to Grid'c number of rows and number of columns!

Remember structs?

GridLocation chosen;
cout << chosen.row << endl;
cout << chosen.col << endl;

3;
4;

chosen.row
chosen.col

Grid<int> board(3, 3);
cout << board.numRows() << endl;
cout << board.numCols() << endl;

board.resize(5, 4);

We have fo uce a function that allows us to adjust thoce properties instead.

Remember structs?

GridLocation chosen;
cout << chosen.row << endl;
cout << chosen.col << endl;

3;
4;

chosen.row
chosen.col

Grid<int> board(3, 3);
cout << board.numRows() << endl;
cout << board.numCols() << endl;

board.resize(5, 4);

Why?

We have fo uce a function that allows us to adjust thoce properties instead.

encapsulation
The process of grouping related information
and relevant functions into one unit and
defining where that information is accessible

IF we have time at the end of clace, well look
at an example of why thic matters!

encapsulation
The process of grouping related information
and relevant functions into one unit and
defining where that information is accessible

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

What is a class?

e Examples of classes we’ve already seen: Vectors, Maps, Stacks, Queues

e FEvery class has two parts:
o an interface specifying what operations can be performed on instances of
the class (this defines the abstraction boundary)
o an implementation specifying how those operations are to be performed

e The only difference between structs + classes are the encapsulation defaults.
o A struct defaults to public members (accessible outside the class itself).
o A class defaults to private members (accessible only inside the class
implementation).

Another way to think about classes...

e A blueprint for a new type of C++ object!

Another way to think about classes...

e A blueprint for a new type of C++ object!

o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

instance
When we create an object that is our new type,
we call this creating an instance of our class.

Another way to think about classes...

e A blueprint for a new type of C++ object!
o The blueprint describes a general structure, and we can create
specific instances of our class using this structure.

Vector<int> wvec;
|

Creates an ingtance of the lfector clase
(i.e. an sbject of the type Vector)

How do we design C++
classes?

Three main parts

e Member variables

e Member functions (methods)

e Constructor

Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

Three main parts

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

Three main parts

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;

Three main parts

e Member variables
o These are the variables stored within the class
o Usually not accessible outside the class implementation

e Member functions (methods)
o Functions you can call on the object
o E.g.vec.add(), vec.size(), vec.remove(), etc.

e Constructor
o Gets called when you create the object
o E.g.Vector<int> vec;

How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

How do we design a class?

We must specify the 3 parts:

1. Member variables: What subvariables make up this new variable type?

2. Member functions: What functions can you call on a variable of this
type?

3. Constructor: What happens when you make a new instance of this
type?

In general, clasces are uceful in helping ue with complex programs where
information can be grovped info objects.

Design activity

How would you design a class for...

e A bank account that enables
transferring funds between
accounts

e A Spotify (or other music
platform) playlist

We must specify the 3 parts:

1.

Member variables: What subvariables
make up this new variable type?

Member functions: What functions can
you call on a variable of this type?

Constructor: What happens when you
make a new instance of this type?

Attendance ticket:
https://tinyurl.com/designClassesOOP

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/designClassesOOP

How would you design a class for...

e A bank account that enables
transferring funds between
accounts

e A Spotify (or other music
platform) playlist

We must specify the 3 parts:

1.

Member variables: What subvariables
make up this new variable type?

Member functions: What functions can
you call on a variable of this type?

Constructor: What happens when you
make a new instance of this type?

Announcements

Announcements

e Assignment 3 is due next Tuesday at 11:59pm PDT. The grace period ends
Wednesday at 11:59pm PDT.

e Assignment 2 revisions will be due Friday, July 22 at 11:59pm PDT.

e Midterm grades will be released early next week, and you’ll be able to
schedule a check-in with your SL either next week or the following.

e The final project proposals are due Sunday, July 24.
o Come chat with us about what you’re interested in at Office Hours!

How do we write classes in
C++7?

Random Bags

Random Bags

o A is a data structure similar to a stack or queue. It

supports two operations:

0 , which puts an element into the random bag, and
0 , which returns and removes a random element from the bag.

Random Bags

o A is a data structure similar to a stack or queue. It
supports two operations:
0 , which puts an element into the random bag, and
0 , which returns and removes a random element from the bag.

e Random bags have a number of applications:

o Simpler: Shuffling a deck of cards.
o More advanced: Generating artwork, designing mazes, and training self-driving cars
to park and change lanes!

Random Bags

o A is a data structure similar to a stack or queue. It
supports two operations:
0 , which puts an element into the random bag, and
0 , which returns and removes a random element from the bag.

e Random bags have a number of applications:

o Simpler: Shuffling a deck of cards.
o More advanced: Generating artwork, designing mazes, and training self-driving cars
to park and change lanes.

e Let’s go create our own custom RandomBag type!

Creating our own class

Classes in C++

e Defining a class in C++ (typically) requires two steps:

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

Classes in C++

e Defining a class in C++ (typically) requires two steps:

o Create a (typically suffixed with .h) describing what
operations the class can perform and what internal state it needs.
o Create an (typically suffixed with . cpp) that

contains the implementation of the class.

e Clients of the class can then include (using the #include directive)
the header file to use the class.

Header files

What's in a header?

What's in a header?

This boilerplate code is called a
It used to

make sure weird things dont

happen if you include the came

header twice.

Curious how it workes? Come ask uc

after clagcs!

What's in a header?

#pragma once

This ic a . We're
creating a new clacs called
RandomBag. (/e a struct, this
defines the name of a new type

that we can uge in our programs.

What's in a header?

#pragma once

class RandomBag ({

Don't forget to add the semicolon!
/ Youll run into come ccary compiler
} errore if you leave it out!

What's in a header?

Interface

#pragma once (What it looks like)

class RandomBag ({

Implementation
(How it works)

o - The cpecifies what
What Sina header ‘ Functions you can call on objects
of thic type. (i.e. ite methodc)

#pragma once

class RandomBag { Think things like the vector
public: D .add () function or the string¥

.find ().

private:

};

What's in a header?

The cpecifies what

Functions you can call on objects

of thic type. (i.e. ite methodc)
#pragma once
class RandomBag { [hink t/u'ng:’ like the Vector
public: N .add() function or the string®
.find() -
J [he
private: contains information that objec?‘f
}<\ of thic clacs type will need in order
b to do their job properly. This ic

invisible to people vcing the clase.

What's in a header?

#pragma once Thece are of

class RandomBag { the RandomBag clase. Theyre

Functions you can call on objects

public:

of t ype RandomBag.

All member functions must be
private: defined in the clace definition. Well

implement these functions in the

}; C++ file.

What's in a header?

#pragma once
#include '"vector.h" Thic ic a of the
class RandomBag ({

clace. This felle ve how the clases i¢

public:
void add (int value): |wplemented. Internall, we're
int removeRandom() ; going to sfore a Vector<int>
holding afl the elements. The only
code that can accecs or tovch this
private: Vector /¢ the RandomBag

implementation.

};

Header summary

#pragma once

#include "vector.h"

class RandomBag { K—\ C/a.('C c{eﬁ'm‘ﬁah am/ name
public:

void add(int wvalue) ; K\ /M thod
elhod¢

int removeRandom() ;

private:

Vector<int> elems; & \ Member variable
};

Header summary

#pragma once
#include "vector.h"
class RandomBag ({
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

Implementation files

RandomBag. cpp

#include "RandomBag.h"

#include "RandomBag.h"

IF we're going to implement the
RandomBag Cype, the .cpp file
needs to have the class definition
available.

#include "RandomBag.h"

IF we're going to implement the
RandomBag Cype, the .cpp file

needs to have the clacs definition

availoble.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {

}

elems.add (value) ;

[he syntax RandomBag: :add means the add function defined ingide
of RandomBag. " The :: operator is called the
in C++ and is vsed To cay where to look for things.

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void

add (int wvalue) {
elems.add (value) ;

IF we had written comething like this inctead, then the compiler
would think we were just making a free function named add that has

nothing to do with RandomBag’ s vercion of add. [hate an easy

mistoke to make!

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}
We don't need to x',bec:'fy where elems ic. The compiler knows that

were incide RandomBag, and <o it knows that thic means "the current
RandomBag ¢ coflection of elementc.” (Jcing the ccope recolution

operafor is like pascing in an invicible parameter to the function fo

indicate what the current inctance is.

FIITCIUUeE—VeCTOL T
class RandomBag {
public:

void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;

private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size();
bool isEmpty () ;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, elems.size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
) bool isEmpty () ;
private:
Vector<int> elems;

};

}

int RandomBag: :size() {
return elems.size();

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;
}
int index = randomInteger (0, elems.size()
int result = elems[index];
elems.remove (index) ;
return result;

}

int RandomBag: :size() {
return elems.size();

}

bool RandomBag: :isEmpty () {
return size() == 0;

}

- 1);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
bool isEmpty () ;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;
}
int index = randomInteger (0, elems.size() - 1);
int result = elems[index];

elems.remove (index) ;
return result; This code calle our own
} .
size() function. The clacs
int RandomBag: :size() { implementation can use the
return elems.size(); o
} public interface.

bool RandomBag: :isEmpty () {
return size() == 0;

}

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
bool isEmpty () ;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {

}

elems.add (value) ;

int RandomBag: :removeRandom() {

}

if (elems.isEmpty()) {

error ("Aaaaahhh!") ;
}
int index = randomInteger (0, size()
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag: :size() {

}

return elems.size();

bool RandomBag: :isEmpty () {

}

return size() == 0;

What a g00d idea!
Let'c use it up here
a¢ well.

- 1);

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() ;
bool isEmpty () ;
private:
Vector<int> elems;

};

}

}

}

}

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

int RandomBag: :removeRandom() {

if (elems.isEmpty()) {

error ("Aaaaahhh!") ;
}
int index = randomInteger (0, size()
int result = elems[index];
elems.remove (index) ;
return result;

int RandomBag: :size() {

return elems.size() ;

bool RandomBag: :isEmpty () {

return size() == 0;

- 1);

This use of the const éegward
means ' promice that thic
Function doecnt change the
ctate of the object.”

public:
void add(int wvalue) ;
int removeRandom() ;
int size () const;
bool isEmpty () const;
private:
Vector<int> elems;

};

#include "RandomBag.h"

void RandomBag: :add(int wvalue) {
elems.add (value) ;

}

int RandomBag: :removeRandom() {
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int ind| bize() - 1);
T AN We have to remember to [0)
int res #pragma once
iiiﬁiﬁr add it into the #include "vector.h"
) implementation as well! class RandomBag {
public:
.) void add(int wvalue) ;
int RandomBag::size () const { .
] int removeRandom() ;
return elems.size(); . .
int size() const;
) bool isEmpty () const;
- private:
bool RandomBég..lsEmpty() const { Vector<int> elems ;
return size() == 0; };
} 14

#include "RandomBag.h"

Note: There are come
void RandomBag::add(int wvalue) { .
elems.add (value) ; additional include¢ that

} well need. (Well cee them in

int RandomBag: :removeRandom() { the actval -Cpp /[;‘/e'}
if (elems.isEmpty()) {
error ("Aaaaahhh!") ;

}

int index = randomInteger (0, size() - 1);

int result = elems[index];
elems.remove (index) ;
return result;

#pragma once
#include "vector.h"
class RandomBag {
public:
void add(int wvalue) ;
int removeRandom() ;
int size() const;
) bool isEmpty () const;
private:
Vector<int> elems;

};

}

int RandomBag::size () const {
return elems.size();

bool RandomBag: :isEmpty () const {
return size() == 0;

}

Using a custom class

[Qt Creator demo]

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

e Member functions have an implicit parameter that allows them to know what
instance of the class (i.e. which object) they’re operating on

Takeaways

e Public member variables declared in the header file are automatically
accessible in the . cpp file

e As a best practice, member variables should be private, and you can create
public member functions to allow users to edit them

e Member functions have an implicit parameter that allows them to know what
instance of the class (i.e. which object) they’re operating on

e When you don’t have a constructor, there’s a default, zero-argument

constructor that instantiates all private member variables
o (We’ll see an explicit constructor next week!)

An example:
Structs vs. classes

[time-permitting]

Summary

Object-Oriented Programming

e We create our own abstractions for defining data types using classes. Classes
allow us to encapsulate information in a structured way.

e C(lasses have three main parts to keep in mind when designing them:
o Member variables » these are always private
o Member functions (methods) = these can be private or public
o Constructor = this is created by default if you don’t define one

e Writing classes requires the creation of a header (. h) file for the interface and
an implementation (. cpp) file.

What's next?

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

testing

Object-Oriented
Programming

e

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

analysis problem-solving

Dynamic memory and arrays

Array size = 10

10 | 20 | 30 | 40 50 60 | 70 | 80 | 90 | 100

Top of the stack

Stack base

Stack Heap

